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Algorithm 1: An algorithm for computing the ML estimate of (y,, b,8) in a general
continuous TCM

Sort {|V;{}i=; inascending order into W; S W, < --- < W,
. Determine

[N I

m = min{i: W; = d}
the smallest integer { such that W; > d.
3. Foreach y, € {d, Wy, Wypiq, -+, Wy}, do

4. Set
N (o) = (1Y <y} and Ny (vo) = {i:1¥i] < y.}-
5. Compute
Nt N
e = MO g gy - 0O

6. Determine 8%(y.) and 67 (y.) to be the ML estimate of 6 for the truncated

distribution mf(ﬂﬂ) over the sample sets {¥;:i € N (y.)} and {Y;:i €

Ny (v.)}, respectively.
7. I 070 b* (), 07 (IVT) 2 97 (e, b™ (), 67 () 1Y7), then
8. set (b(¥c), 0(¥c)) = CHCAN M)
9. else
10. set (b(¥e), 0(¥e)) = (b™(¥e), 8~ (0c))-
11. end if
12. end for

13. Determine

Vi = arg maxy e wp, w9 Ve DO, 0.
14. Set b* = b(y}) and 8" = 0(y;).

Figure 12
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Algorithm 2: An iterative algorithm for computing the ML estimate of A in a truncated
Laplacian distribution

1. Compute
1
!
mi2 M
i€es
2. If C=0,then
3. Set 4,, =0;
4. else
5. if C>y./2,then
6. Set A, = oo;
7. else
8. Initialization: set 4, = C;
9. For i = 1, compute
/1 _ C yc.e“J’C/Ai_l .
=0+ 1—e~Velhi—y? 25
10. Repeat Step 9 for i = 1,2,--- until A; —A;_, < &, where £ > 0 is a small
prescribed threshold, and then output the final A; as an approximation for 4, .
11. end if
12. end if

Figure 13
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Algorithm 3: An iterative algorithm for computing the ML estimate A; of 1 in a truncated
geometric distribution

1. If K =1,then
2 Select A4, > 0 arbitrarily.
3. else
4 Compute
1
C=m z (hyl - 1.
N (K !
N ( )liENl(K)
5. if € = 0,then
6. Set A, =0;
7. else
8. if € ==, then
9. Sel Ax = oo;
10. else
11. Tnitialization: set Cy = € and A = q/In lzc".
g
12. For i = 1, compute
IS
= C +__—exq//1(‘“1)_1
A0 = _4 (38)
1n1+ci
Cq
13. Repeat Step 12 for i = 1,2, until A& — 200 < ¢ where € > 0 is
a small prescribed threshold, and then output the final A® as an approximation for
Ag.
14. end if
15. end if
16. end if

Figure 14



U.S. Patent Jan. 26, 2016 Sheet 13 of 28 US 9,245,354 B2

Algorithm 4: An algorithm for computing the ML estimate (b”,p", A%, K*) in the GMTCM.

1. Determine Ny = {j:u; = 0}.

2. For K=12,-,a,do

3. Set Ny (K) = {j: 0 < |y;| <K}, and N,(K) = {j: || > K}.
4

Compute
Nyl + [N (K
bty = Mo+ 1M ()]
1Nl
K)= o
PUO = T+ I G]
5. Determine Ag according to Algorithm 3.
6. End for
7. Determine
K" = arg max,exs,G(K, b(K), p(K), Ax). (39)

8. Set b = b(K"), p* = p(K™), and A" = A(K™).

Figure 15
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Table 1: Overall comparisons between the LPTCM and GG model for 9 images for
continuous DCT coefficients.

bird boat fish couple Hill Lenna | Baboon | Mountain | Pepper
w,2(%) 98 60 8 68 68 67 51 84 87
Figure 16

Table 2: Overall comparisons between the GMTCM and GG model for all images coded

using JPEG with QF= 100.

bird] boat | fish | Cp | hill Lenna] Bb | Mt Pp | SE| SS|CSi{BbT| BI | B2 | B3 | B4} BS

wy (%)]95] 38 | 100 44 [ 59 [ 60 | 49 | 48 | 71 [ 95 | 78 | 8 | 48 | 52 | 83 | 62 | 40 | 60
wye |98 57 [ 100 59 | 67 | 67 [ 52 | 83 | 84 | 83 | 89 | 8 | 62 | 52 | 89 | 71 | 65 | 65

(%)

Figure 17

Table 3: Overall comparisons between the GMTCM and GG model for all images coded
using JPEG with QF= 90.

bird|boat| fish {Cp| hill Lenna) Bb | Mt | Pp | SE| SS { CS {BbT| BI | B2 | B3 | B4 | BS
wg (%) 83| 73| 97 [69] 82 | 75 | 79 | 83 | 85 1100192 {7918 | 78193 (7685175
wyz (W) 95 [ 73| 98 |67/ 80 | 71 | 79| 84 | 87 | 98 | 90 | 78179 | 73 191|738 |75

Figure 18

Table 4: Overall comparisons between the GMTCM and GG model for all images coded

using JPEG with QF= 80.

bird | boat | fish | Cp | hill | Lenna | Bb | Mt { Pp | SE | SS | CS | BbT | Bl | B2 | B3 | B4 | BS
we eg | 98 | 76 | 98 [ 79| 88 | 79 | 86 | 81 |86 | 100} 97 87 | 8 | 70| 94|80 | 91| 85

weo ey | 98 78 9 | 79 | 82 74 84 | 83 [ 8 | 100 | 95 | 81 8 | 68| 91789579

Figure 19

Table 5: Overall comparisons between the GMTCM and GG model for all images coded
using JPLG with QF= 70. S
bird | boat | fish | Cp | hill | Lenna | Bb | Mt | Pp { SE | SS | CS | BbT | Bl | B2 | B3 | B4 | BS
wa e9 | 94 | 83 1 95 |82 79| 77 | 90|98 |84 |98 |98 |87 | 8 | 7319785 |95 | &7
wo pp| 97 | 83 | 80 | 79| 91 | 80 | 84| 94187198 |97 |87 | 8 | 75|94 |8 | 95| 83

Figure 20
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Table 6: The x? distances by the GG model, GMTCM, and Laplacian model for all 63
ACs from JPEG-coded image ‘bird” with QF= 100.

DC ACq AC2 AC3 ACs ACs ACs AC7
XIZ}GD / 1865.8 8306.8 1430292 573.7 3083254.5 1209.3 393208.6
Yeureml ! 626.4 400.2 354.0 165.7 196.9 117.9 | 2142
Xfap / 13693.8 1167961.2 | 24820290.1 2864.0 54766368.0 | 14985.7 | 2147913.6
ACs ACg ACyq AC1q ACq2 ACq3 AC14 ACys
XéGD 7259 970.9 3402.4 1691.2 971.8 2972 3151.8 1688.5
Yrrem| 6259 | 2017 2833 2124 1174 83.2 1107 | 1082
Xl%ap 1268.3 4270.2 119380.5 31807.7 6085.1 4114 16082.8 3419.1
AC1s ACqy ACus ACqg ACa0 AC24 AC22 ACo3
XCZ?GD 323.0 2486.4 1090.2 5094.3 16945.6 92796.0 1548.0 4859.1
X(Z;MTCM 323.1 386.2 3353 149.0 146.3 163.2 94.6 128.7
Xgap 936.5 | 2322628 16655.1 216901.8 90093.3 1133827.9 5835.9 7650.7
ACo4 ACzs ACos ACy7 ACos ACzg ACag AC3
Yicp | 5240 | 112036 | 15210 17197 | 660353 | 14055 | 4012 | 669.0
Y iyrem| 2559 | 2932 121.8 102.6 127.8 89.2 4838 755
Xlz,ap 1626.7 | 272019.0 11216.7 3628.5 1241784 1359.2 509.2 406.9
ACs2 ACs3 AC3s ACss ACss ACa7 ACzg AC3g
X(Z;GD 371.6 14887.1 5097.1 2624.6 1549.7 5950.8 1494 163.2
X imrem| 2111 | 1836 1379 143.8 74.5 72.8 62.4 79.0
Xl%ap 839.4 | 4483779 35570.0 7394.5 5400.7 955.2 207.0 276.6
ACao ACa1 ACa2 ACas ACas ACss ACus ACa7
X(%GD 542.4 753.5 1106.4 2986.5 640.6 8886.9 90.3 3257
Yiurem| 1916 | 1991 1452 70.9 517 86.5 52.7 1252
Xlz,ap 3143.8 4156.0 2946.3 11124 1004.9 28717 1111 217.1
ACas ACag ACso ACsq ACs2 ACs3 ACss ACss
XéGD 269.7 3224 1268.6 22429 1739 204.2 154.5 296.6
Y eprcm| 805 | 803 72.0 65.1 44.7 46.8 67.8 173.4
Xlz,ap 3472 448.7 2625.0 7492.4 291.8 1815.9 685.3 37040.2
ACsp ACs7 ACss ACsg ACeg0 ACs1 ACs2 ACe3
XéGD 3579 5109.4 11828.1 299.5 166.1 349.8 4852 1422.4
Yiurem| 1068 | 1589 108.7 87.4 63.5 108.1 1889 | 4558
Xlz,ap 926.2 22503.0 151694.1 217.1 320.9 205.3 14914 1485.5

Figure 21
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Table 7: The y? distances by the GG model, GMTCM, and Laplacian model for all 63 ACs
from JPEG-coded image ‘boat’ with QF= 100.

DC AC4 AC; ACs3 ACq ACs ACs ACy
e / 7186 | 6204 557.8 4773 | 5458 | 4247 | 5856
XCZ;MTCM / 1485.9 1746.8 1547.5 1006.4 704.1 420.7 263.4
Xfap / 23188.5 | 1602820.9 | 2277420.6 | 872978 84635.5 | 224335 9073.9
ACs ACgo AC1o AC1 AC12 ACq3 AC14 AC1s
XéGD 625.6 350.8 4282 3728 426.1 544.3 385.0 514.5
XEMTCM 1033.2 644.9 869.8 708.7 831.5 585.9 233.0 177.3
Xfap 4716.9 2929.6 56551.9 26189.7 105759.6 | 1732222 | 2525.0 2154.7
ACqe ACq7 ACqg AC19 ACz AC24 ACz2 ACa3
XE'GD 3534 2104 3599 295.7 386.4 811.7 17814 54392
XCZ;MTCM 1056.5 715.0 509.7 4262 3427 2320 2614 140.8
Xlz,ap 2067.7 7645.7 117204 9907.7 10029.4 15323.1 | 24484.1 15670.3
ACo4 ACos ACo2¢ ACy7 ACosg AC2g ACs0 AC3q
XéGD 423.1 253.4 627.2 3459 263.7 612.9 4627.0 3117
XéMTCM 1161.9 519.6 402.4 317.8 2175 169.7 90.5 82.0
Xl%ap 3057903 | 475523 | 161111.6 6907.1 776.7 3291.2 3625.1 163.1
ACa2 AC33 ACa4 ACss ACzs ACa7 ACas ACs0
XéGD 217.0 205.3 480.7 282.3 697.8 1489.9 19910.2 702.5
XéMTCM 520.7 221.2 250.4 164.5 98.6 84.9 1144 90.6
Xlz,ap 1957.0 864.1 27640.4 3852 11223 4423 538.8 143.8
ACa0 ACaq ACa2 ACas ACuq ACus ACss ACa7
XCZJGD 181.0 971.7 5953.7 989.6 281.1 492.0 88.4 221.1
X(%MTCM 239.5 1182 162.8 105.4 59.7 106.8 754 100.0
Y Pap 830.9 | 5867.0 | 84050 | 16267 | 1448 | 1957 | 1801 | 1629
ACss ACys ACsp ACs1 ACs2 ACs3 ACsa ACss
X(%GD 179.6 165.0 2095.7 991.8 78.8 83.1 441 275670.1
X%MTCM 84.0 72.9 547 82.8 94.8 879 116.8 153.2
Xfap 361.6 166.9 406.7 234.6 229.2 192.5 195.5 267.2
ACse ACsy ACss ACss ACe0 ACs1 ACe2 ACes
Yeop 114.5 162.0 1863 29792.0 57.3 21.8 19.5 35.8
XéMTCM 50.2 80.6 584 121.8 130.0 92.8 116.8 63.5
Xlz,ap 158.5 263.7 201.5 232.4 2632 2373 235.6 207.1

Figure 22
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Table 8: The y? distances by the GG model, GMTCM, and Laplacian model for all 63 ACs
from JPEG-coded image ‘CS’ with QF= 100.

DC ACq AC2 ACa ACs ACs ACs ACy
Yeep / 27999 | 23983 | 22945 | 167632 | 12789 | 23514 | 174338
X evrem / 7160.3 | 11997.5 | 9240.4 | 89855 | 72752 | 5793.4 | 65735
Xlz,ap / >10% | >10% | >10% | >10% | >10% | >10% | > 10®
ACs ACg AC1o AC11 ACq2 ACq3 AC1s ACis
XEGD 1521.0 1628.4 1955.1 2326.6 44789 | 3068.7 | 25479 | 16209
XSMTCM 4892.6 10174.5 | 12482.9 | 10228.5 7571.3 5378.6 | 42464 | 42533
XLZap 15943004 | > 10% > 10® >10% | >10% >10% | >10% |>10°
ACrs ACq7 AC1g AC1g ACz0 AC21 AC22 ACos3
Yicp 1848.8 | 2361.8 | 15257 | 34053 | 11489 | 8129 | 992.0 | 1219.4
Xemrem| 73583 | 9899.6 | 114442 | 65517 | 87809 | 47043 | 38574 | 40448
Xfap > 108 >10% | >10% | >10% | >10% | >10% | >10% | >10°
ACo4 ACzs AC2e ACo7 AC2s AC2g ACao AC3zq
X(Z;GD 5870.0 792.0 4033.0 907.4 33659 1733.2 975.6 3447.1
Yemrcm| 76363 | 68330 | 82198 | 64333 | 67658 | 50482 | 4059.7 | 3794.9
X%ap > 108 >10% | >10% | >10% | >10% | >10% | >10% | >10°
ACz3 ACa3 AC34 ACas ACss ACay AC3s ACzs
XCZ?GD 6533.3 692.6 982.0 873.1 1395.8 | 1077.2 | 114028 | 7384

Yemrcem| 97258 | 61781 | 69152 | 57113 | 5990.6 | 4916.0 | 3471.8 | 3775.0

Xlz,a‘p > 108 >10% | >10% | >10% | >10% | >10% | >10% | > 108

ACao ACsq1 ACa2 ACaz ACu4 ACas AC4s ACa7
XCZ;GD 102124 1230.0 4877.1 5219 1798.3 1420.5 536.3 2454 .8
XéMTCM 9403.3 5657.7 5233.7 4510.4 43072 | 40369 | 3405.1 | 3564.0
Xlz,ap > 108 >10% | >10% | >10% | >10% | >10% | >10% | > 10®

ACss ACyo ACsp ACs1 ACs2 ACs3 ACsq ACss
XCZ?GD 7909.4 683.0 1561.2 1062.2 712.8 790.4 766.2 1676.7
Yemrom| 71410 | 53320 | 4684.6 | 4992.8 | 4659.5 | 37725 | 3946.3 | 3919.4
XLZap > 108 >10% | >10% | >10% | >10% | >10°% | >10% | > 10°

ACss ACs7 ACss ACsg ACe0 ACs1 ACs2 ACs3
Yécp 10169 | 6692 | 16589 | 43829 | 5712.8 | 613.0 | 7829 | 14454
XéMTCM 7528.6 5458.6 4388.5 4634.2 4637.1 3633.6 | 3808.7 | 4561.8
Xlz,ap > 108 >10% | >10% | >10% >10% | >10% | >10% | > 108

Figure 23



U.S. Patent Jan. 26, 2016 Sheet 18 of 28 US 9,245,354 B2

Table 9: The y* distances by the GG model, GMTCM, and Laplacian model for all 63 ACs
from JPEG-coded image “CS’ with QF= 90.

DC AC4 ACo AC3 ACq4 ACs ACs ACy
2
Xéap / 2064.6 1373.0 1031.1 3161.8 2111.8 1923.2 19133
2
XGmrem / 6234.6 64333 32145 13332 810.0 576.0 542.0
Xfap / 80069048 .4 > 108 > 108 > 108 > 108 > 108 > 108
ACsg ACg ACqo ACqq ACq2 ACq3 ACqq ACqs
Xecp 8395 970.0 1045.0 | 12116 | 11343 | 867.5 | 11592 | 16459
2
X GMTCM 41398 7612.2 3355.0 1548.3 772.6 352.4 2393 191.6
Xfap 8448627 >10%® | >10% | >10%8 | >10° | >10% | >10% | >10°
AC1e ACa7 ACqs ACqo ACoo ACz1 ACo ACzs
XéGD 798.9 986.4 798.4 1046.6 23533 3106.8 7932.9 1605.4
2
XemMTCM 4912.7 3697.1 2648.6 746.2 439.4 138.8 133.6 236.2
lefap > 108 > 108 >10% | >10% | >10% | >10% | >10% | >10%
AC24 ACa2s AC2s ACa7 ACag ACog ACap AC31
XéGD 3396.9 496.1 1229.7 1276.2 770.4 2155.0 134547 1425.8
XéMTCM 4178.0 1842.1 11174 475.1 299.2 97.3 158.3 223.6
Xfap > 108 > 108 >10% | >10%8 | >10% | >10%8 | >10% | >10°
ACs2 ACss AC34 ACss ACszs ACs7 ACss ACzo
XéGD 2068.5 619.6 989.6 4952.7 42272 3825.0 17052.5 4682.8
XgMTCM 3242.1 1481.0 577.6 232.0 148.2 98.0 49.8 117.0
Xfap > 108 > 108 >10% | > 108 >10% | >10% | >10% | > 108
ACqo AC41 ACa2 AC43 ACys ACys ACss ACs7
XSGD 2746.0 21822 3276.1 1867.3 20163.7 | 3692.8 10460.0 | 3205.8
X(Z}MTCM 20333 5774 235.9 1354 144.6 46.0 71.0 81.8
Xlz,dp > 108 > 108 >10% | > 108 > 108 > 108 > 108 > 108
ACss ACasg ACso ACsq ACs2 ACs3 ACsa ACss
XCZ;GD 806.3 3255.5 1468.7 | 132309 5438.1 43188.2 | 80256.5 | 38402.9
2
X eyrem| 763.0 3147 | 2008 | 1904 | 1194 | SL1 | 581 | 587
Xlz,ap > 108 > 108 >10% | > 108 >10% | >10% | >10% | > 10%
ACss ACsy ACsg AC5sg ACso ACes1 ACs2 ACs3
XéGD 4765.6 104373 2637.0 3696.0 54169 8457.0 12351.7 | 11116.8
Xeurcm| 5616 2043 1219 | 830 | 859 | 494 | 515 | 735
Xlz,ap > 108 > 108 >10% | > 108 >10% | >10% | >10% | > 108

Figure 24
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Algorithm 5: An algorithm for computing the ML estimate of (y,, by, 6) in the bi-segment
TCM.

Sort {]Y;|}i=, inascending orderinto Wy < W, < ... < W,.
. Determine

[N I

m = min{i: W; = d}

the smallest integer i such that W; > d.
3. foreach y. € {d, Wy, Wpiq,-+, Wa} do
4. Set _

(b1 (¥Ve,), 0(¥e,)) £ arg maxy, 5g(ve,, b1, O1Y1")
5. end for
6. Determine _
)’gl = arg Mmaxy, e{d,WmWpi1,-Wn}d Ve, by e, ) 60e,) I

7. Set by = by(¥e,) and 8" = 6(yc,).

Figure 31

Algorithm 6: A greedy algorithm for estimating y. , by, and 4; in MLTCM.

1. Initialization: Set y, = 0 and
W = (W, Wy, -, Wy).
2. Determine an initial T to be the minimum T suchthat T > T", Wy > 0, and
Wry > Wy Ifnosuch T exists, set T = |W], the length of W, i.e., the number of
samples in W, and compute A(WT) as in (50) with y. = a — y;; then output
Y W)y=a—y,, B(W)= %’ and A(W) = A(WT) as estimates of Ye,» b1, and A4,
respectively, and stop.
Compute A*(WT) and 2~ (WT) as in (52) and (53) with y, = Wy, respectively.
Determine AT = |{i:W; = Wy, 1}
Compute A(WTH4T) as in (50) with y, = Wyiar.
If AWTHT) g [A=(WT), 27 (WT)], then W and W1AT are deemed to come
from different models. Compute A(W7) as in (50) with y, = Wy, ar. Then output
Y. (W) = Wryar, BW) = g, and A(W) = A(WT) as estimates of Ye,» b1, and A4,
respectively, and stop.
7. Otherwise, W' and WAT are deemed to come from the same Laplacian model.
Update T into T + AT.
8. If T =|W]|,output Y (W)=W,;, B(W)= -le, and A(W) = A(WT) as estimates of
Ye,» b1, and A4, respectively, and stop.
9. Otherwise, go back to Step 3.

AN S

Figure 32
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Algorithm 7: A greedy algorithm for determining [ and estimating ¥, b, and A in
MLTCM

1. Sort |Y1|,|¥z],---,|¥,| in ascending order into Wy < W, < - < W, and set
W = (Wll Wz, ‘“,Wn)-
2. Initialization: Set t =0, j =1, y,=0,and U=W.

3. while |U| > 0, i.e, U is not empty do
4, Run Algorithm 6 with initialization y; and U to get T(U), Y.(U), B(U), and
AU).
3. Set ye; = ys + Ye(U), b; = B(U),and A; = A(U).
6. Update y, by setting y, = Ye;-
7. Increase ¢ by T(U),and j by 1.
8. Update U by setting
U= W1 = Vs Wegz — ¥ o, Wo — ¥5).
9. end while

Figure 33
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Algorithm 8: A greedy algorithm for estimating K;, by, and A, in MGTCM.

1. Initialization: Set K = 0 and

W= (W]_: WZ» ] Wﬁ)
2. Determine an initial T to be the minimum T suchthat T = T* and Wy > Wy If
nosuch T exists, set T = |W], the length of W, i.e., the number of samples in W,
and compute A(WT) asin (21) with K = a — K; then output K(W) = a — K;,
B(W) = _;r: and A(W) = A(WT) as estimates of Ky, by, and A4, respectively, and
stop.
Compute A*(WT) and A=(WT) as in (63) and (64) with K = Wy, respectively.
Determine AT = {{i: W; = Wy }.
Compute A(WT*ATY as in (62) with K = Wy ar.
If AWTHTY g2 [A~(WT), AT (W], then WT and WEHT are deemed to come
from different models. Compute A(W7) as in (62) with K = Wy. Then output
KW) =Wy, B(W)= %, and A(W) = A(WT) as estimates of Ky, by, and Ay,
respectively, and stop.
7. Otherwise, W7 and W/ A" are deemed to come from the same geometric model.

Update T into T + AT.

8. If T=|W]|,output K(W) =W,, B(W) = %, and A(W) = A(WT) as estimates of

K, by, and A, respectively, and stop.
9. Otherwise, go back to Step 3.

AN

Figure 34

Algorithm 9: A greedy algorithm for determining [ and estimating K, b, and A in
MGTCM from u™.

1. Set Ny = {i:u; =0}, by = [Ny|/n, and #i = n — |[Np|.
2. Sort luy|, i £ Ny, in ascending order into W, < W, < --- < W; and set
W = (W, Wy, -, Wy).
3. Initialization: Set t =0, j=1, K, =0,and U=W.
4. while U] > 0,i.e., U is notempty do
5. Run Algorithm 8 with initialization K; and U to get T(U), K(U), B(U), and
A(U).
6. Set K; = K; + K(U), b; = B(U), and A; = A(U).
7. Update K by setting K; = K;.
8. Increase ¢t by T(U),and j by 1.
9. Update U by setting
U= Weq — K, Wiz — Kg, -, Wi — K).
10. end while

Figure 35
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Table 10: Overall comparisons between the BLTCM and GG model for modeling 15 low
frequency continuous DCT cocfticients.

bird | boat| fish| Cp| hill| Lenna| Bb| Mt| Pp

wy (%) | 100 60 100 | 87 | 87 100 100 | 87 | 100

wyz (%) | 100 87 100 | 100 | 100 100 100 | 87 | 100

Figure 36

Table 11: Overall comparisons between the LPTCM and GG model for modeling 15 low
frequency DCT coefficients.

bird| boat] fishl Cpl hilll Lenna Bb Mi| Pp

wy(%)1 80| 0} 0107 0 (4014040

w.2(%) 931 0 | 0]10}113]| 20 {40|60|60

Figure 37

Table 12: Overall comparisons between BGTCM and the GG model for modeling 15 low
frequency DCT coefficients.

bird boat] fish Cpl hilll Lennal Bbl Mt| Ppl SE SS| CS BbT]| BI[B2 [B3|B4] BS,

wy (%) | 100 60 1100193 (100] 100 [100[100]100{100{100] 87 | 100 | 80 | 87{80(93| 67

w,z (%) 100| 80 1100|8793 | 100 |100] 80|100/100/100| 93 | 100 | 87 {100/8780| 87

Figure 38

Table 13: Overall comparisons between the GMTCM and GG model for modeling 15 low
frequency DCT coefficients.

bird| boat] fishi Cp| hill Lennal Bb) Mt] Pp{ SE! SS| CS| BbT| B1iB2B3[B4| B5

wy (%) 1931 0 1001 07201 20 |40|60|60{73]67|13] 47 | 0 |60]7{93| 7

wyz (%) 80 1 0 1100) 0 120} 13 |53|4740180|67|13| 20 | 0 |47| 7|60 0

Figure 39

Table 14: Overall comparisons between the MGTCM and BGTCM model for modeling low

frequency DCT coefficients.
bird| boat] fish! Cp hili Lenna) Bbl M{ Pp SE SS| CS| BbT| B1|B2 |B3 [B4| B5
wy (%) | 93 | 100 | 80 {100]100{ 100 |73 1931100/ 13 40|20} 100 | 67 [100]100]100] 93
w,z (%) 100 100 | 10093 1100{ 93 [100]100{100, 13 | 13|13 | 93 |67 {100/93|100 93

Figure 40
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SYSTEM AND METHOD HAVING
TRANSPARENT COMPOSITE MODEL FOR
TRANSFORM COEFFICIENTS

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application claims the benefit of priority to U.S. Pro-
visional Patent Application Ser. No. 61/827,321 filed May 24,
2013 entitled TRANSPARENT COMPOSITE MODEL FOR
DCT COEFFICIENTS: DESIGN AND ANALYSIS, the con-
tents of which are hereby incorporated by reference into the
Detailed Description of Example Embodiments.

TECHNICAL FIELD

Embodiments of the present invention generally relate to
modeling of transform coefficients such as DCT coefficients,
and in particular to methods and systems having transparent
composite model for transform coefficients.

BACKGROUND

From its earlier adoption in JPEG to its recent application
in HEVC (High Efficiency Video Coding), the newest video
coding standard [3], the discrete cosine transform (DCT) has
been widely applied in digital signal processing, particularly
in lossy image and video coding. It has thus attracted, during
the past few decades, a lot of interest in understanding the
statistical distribution of DCT coefficients (see, for example,
[11, [4], [7], [9], and references therein). Deep and accurate
understanding of the distribution of DCT coefficients would
be useful to quantization design [12], entropy coding, rate
control [7], image understanding and enhancement [1], and
image and video analytics [13] in general.

In the literature, Laplacian distributions, Cauchy distribu-
tions, Gaussian distributions, mixtures thereof, and general-
ized Gaussian (GG) distributions have all been suggested to
model the distribution of DCT coefficients (see, for example,
[2], [4], [9], and references therein). Depending on the actual
image data sources used and the need to balance modeling
accuracy and model’s simplicity/practicality, each of these
models may be justified to some degree for some specific
application. In general, it is believed that in terms of modeling
accuracy, GG distributions with a shape parameter and a scale
parameter achieve the best performance [2][9]. However,
parameter estimation for GG distributions is difficult and
hence the applicability of the GG model to applications,
particularly online applications, may be limited. On the other
hand, the Laplacian model has been found to balance well
between complexity and modeling accuracy; it has been
widely adopted in image and video coding [12], although its
modeling accuracy is significantly inferior to that of the GG
model [2].

SUMMARY

To better handle the flat tail phenomenon commonly seen
in DCT coefficients, a system and method is provided includ-
ing a model dubbed a transparent composite model (TCM).
Given a sequence of DCT coefficients, a TCM first separates
the tail of the sequence from the main body of the sequence.
Then, a uniform distribution is used to model DCT coeffi-
cients in the flat tail while a different parametric distribution
(such as truncated Laplacian, generalized Gaussian (GG),
and geometric distributions) is used to model data in the main
body. The TCM is continuous if each DCT coefficient is
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2

regarded continuous (i.e., analog), and discrete if each DCT
coefficient is discrete. The separate boundary and other
parameters of the TCM can be estimated via maximum like-
lihood (ML) estimation. Efficient online algorithms with glo-
bal convergence are developed to compute the ML estimates
of these parameters. Analysis and experimental results show
that for real-valued continuous AC coefficients, (1) the TCM
with truncated GG distribution as its parametric distribution
(GGTCM) offers the best modeling accuracy among pure
Laplacian models, pure GG models, and the TCM with trun-
cated Laplacian distribution as its parametric distribution
(LPTCM), at the cost of extra complexity; and (2) LPTCM
offers a modeling accuracy comparable to pure GG models,
but with a lower complexity. On the other hand, for discrete/
integer DCT coefficients, which are mostly seen in real-world
applications of DCT, extensive experiments show viaboth the
divergence test and Chi-square test that the discrete TCM
with truncated geometric distribution as its parametric distri-
bution (GMTCM) models AC coefficients more accurately
than pure Laplacian models and GG models in majority cases
while having simplicity and practicality similar to those of
pure Laplacian models. In addition, it is demonstrated that the
GMTCM also exhibits a good capability of feature extrac-
tion—DCT coefficients in the flat tail identified by the
GMTCM are truly outliers, and these outliers across all AC
frequencies of an image represent an outlier image revealing
some unique global features of the image. This, together with
the low complexity of GMTCM, makes the GMTCM a desir-
able choice for modeling discrete/integer DCT coefficients in
real-world applications, such as image and video coding,
image understanding, image enhancement, etc.

To further improve modeling accuracy, the concept of
TCM can be extended by further separating the main portion
into multiple sub-portions and modeling each sub-portion by
a different parametric distribution (such as truncated Lapla-
cian, generalized Gaussian (GG), and geometric distribu-
tions). The resulting model is dubbed a multiple segment
TCM (MTCM). In the case of general MTCMs based on
truncated Laplacian and geometric distributions (referred to
as MLTCM and MGTCM, respectively), a greedy algorithm
is developed for determining a desired number of segments
and for estimating the corresponding separation boundaries
and other MTCM parameters. For bi-segment TCMs, an effi-
cient online algorithm is further presented for computing the
maximum likelihood (ML) estimates of the separation
boundary and other parameters. Experiments based on Kull-
back-Leibler (KL) divergence and ("2 test show that (1) for
real-valued continuous AC coefficients, the bi-segment TCM
based on truncated Laplacian (BLTCM) models AC coeffi-
cients more accurately than the LPTCM and GG model while
having simplicity and practicality similar to those of LPTCM
and pure Laplacian; and (2) for discrete (integer or quantized)
DCT coefficients, the bi-segment TCM based on truncated
geometric distribution (BGTCM) significantly outperforms
the GMTCM and GG model in terms of modeling accuracy,
while having simplicity and practicality similar to those of
GMTCM. Also shown is that the MGTCM derived by the
greedy algorithm further improves the modeling accuracy
over BGTCM at the cost of more parameters and slight
increase in complexity.

In accordance with an example embodiment, there is pro-
vided a method for modelling a set of transform coefficients,
the method being performed by a device and including: deter-
mining at least one boundary coefficient value; determining
one or more parameters of a first distribution model for trans-
form coefficients of the set the magnitudes of which are
greater than one of the boundary coefficient values; determin-
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ing parameters of at least one further distribution model for
transform coefficients of the set the magnitudes of which are
less than the one of the boundary coefficient values; and
performing a device operation on at least part of a composite
distribution model which is a composite of the first distribu-
tion model and the at least one further distribution model
having the respective determined parameters.

In accordance with an example embodiment, there is pro-
vided a method for a set of transform coefficients, the method
being performed by a device and including: determining at
least one boundary coefficient value which satisfies a maxi-
mum likelihood estimation between the set of transform coef-
ficients and a composite distribution model which is a com-
posite of a plurality of distribution models each for a subset of
transform coefficients of the set bounded by each of the at
least one boundary coefficient values; and performing a
device operation on at least one of the subsets of transform
coefficients.

In accordance with an example embodiment, there is pro-
vided a method for modelling a set of transform coefficients,
the method being performed by a device and including: deter-
mining a boundary coefficient value; determining one or
more parameters of a uniform distribution model for trans-
form coefficients of the set the magnitudes of which are
greater than the boundary coefficient value; determining
parameters of a parametric distribution model for transform
coefficients of the set the magnitudes of which are less than
the boundary coefficient value; and performing a device
operation on at least part of a composite distribution model
which is a composite of the uniform distribution model and
the parametric distribution model having the respective deter-
mined parameters.

In accordance with an example embodiment, there is pro-
vided a device, including memory, a component configured to
access a set of transform coefficients, and a processor config-
ured to execute instructions stored in the memory in order to
perform any or all of the described methods.

In accordance with an example embodiment, there is pro-
vided a non-transitory computer-readable medium contain-
ing instructions executable by a processor for performing any
or all of the described methods.

BRIEF DESCRIPTION OF THE DRAWINGS

Reference will now be made, by way of example, to the
accompanying drawings which show example embodiments,
in which:

FIG. 1 illustrates separate Histograms of two AC compo-
nents in the 8x8 DCT block of the 512x512 Lenna image.

FIG. 2 illustrates detail of the Histograms of FIG. 1 of the
flat tail phenomenon in the 512x512 Lenna image.

FIG. 3 illustrates the overall curves of the LPTCM and
GGTCM for two AC components in the 8x8 DCT block ofthe
512x512 Lenna image.

FIG. 4 illustrates detail of the overall curves of FIG. 3 of the
tails of the LPTCM and GGTCM for two AC components in
the 8x8 DCT block of the 512x512 Lenna image.

FIG. 5 illustrates uniform quantization with deadzone.

FIG. 6 illustrates a test image set 1: From left to right,
top-down, they are referred as ‘bird’, ‘boat’, ‘fish’, ‘couple/
Cp’, ‘hill’, “lena’, “baboon/Bb’, ‘mountain/Bt’, and ‘pepper/
Pp’, respectively.

FIG. 7 illustrates test image set 2: These images are
referred as ‘B1°, ‘B2°, ‘B3, ‘B4’, and ‘B5’, respectively.

FIG. 8 illustrates a test image set 3: These images are the
first frame of four class-F sequences for HEVC screen con-
tent tests. The original file names, which also indicate the
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image resolution, are ‘SlideEditing 1280x720°, ‘Slide-
Show_ 1280x720°, ‘Chinaspeed_ 1024x768’, and ‘Basket-
ballDrillText_ 832x480°, respectively. In the text, their
names are abbreviated as ‘SE’, ‘SS’, ‘CS” and ‘BbT’.

FIG. 9 illustrates an original image (top), inlier image
(middle), and outlier image (bottom), with demonstration of
the perceptual importance of outlier coefficients by the image
of ‘terrace’.

FIG. 10 illustrates an original image (top), inlier image
(middle), and outlier image (bottom), with demonstration of
the perceptual importance of outlier coefficients by the image
of ‘Lenna’.

FIG. 11 illustrates an original image (top), inlier image
(middle), and outlier image (bottom), with demonstration of
the perceptual importance of outlier coefficients by the image
of ‘BbT".

FIG. 12 illustrates Algorithm 1: Computing the ML esti-
mate of (y,,b,0) in a general continuous TCM, in accordance
with an example embodiment.

FIG. 13 illustrates Algorithm 2: An iterative algorithm for
computing the ML, estimate of A in a truncated Laplacian
distribution, in accordance with an example embodiment.

FIG. 14 illustrates Algorithm 3: An iterative algorithm for
computing the ML estimate A, of A in a truncated geometric
distribution, in accordance with an example embodiment.

FIG. 15 illustrates Algorithm 4: An algorithm for comput-
ing the ML estimate (b*, p*, A*, K¥) in the GMTCM, in
accordance with an example embodiment.

FIG. 16 shows Table 1: Overall comparisons between the
LPTCM and GG model for 9 images for continuous DCT
coefficients.

FIG. 17 shows Table 2: Overall comparisons between the
GMTCM and GG model for all images coded using JPEG
with QF=100.

FIG. 18 shows Table 3: Overall comparisons between the
GMTCM and GG model for all images coded using JPEG
with QF=90.

FIG. 19 shows Table 4: Overall comparisons between the
GMTCM and GG model for all images coded using JPEG
with QF=80.

FIG. 20 shows Table 5: Overall comparisons between the
GMTCM and GG model for all images coded using JPEG
with QF=70.

FIG. 21 shows Table 6: The * distances by the GG model,
GMTCM, and Laplacian model for all 63 ACs from JPEG-
coded image ‘bird” with QF=100.

FIG. 22 shows Table 7: The x> distances by the GG model,
GMTCM, and Laplacian model for all 63 ACs from JPEG-
coded image ‘boat’ with QF=100.

FIG. 23 shows Table 8: The x> distances by the GG model,
GMTCM, and Laplacian model for all 63 ACs from JPEG-
coded image ‘CS’ with QF=100.

FIG. 24 shows Table 9: The * distances by the GG model,
GMTCM, and Laplacian model for all 63 ACs from JPEG-
coded image ‘CS’ with QF=90.

FIG. 25 illustrates a block diagram of an example device, in
accordance with an example embodiment.

FIG. 26 illustrates an example method for modelling a set
of transform coefficients, in accordance with an example
embodiment.

FIG. 27 illustrates the y* scores and KL divergence scores
by GGD, Laplace, GMTCM, BGTCM and MGTCM for the
first 15 low-frequency ACs along the zigzag order from
JPEG-coded image ‘boat’ with QF=100.

FIG. 28 illustrates the y* scores and KL divergence scores
by GGD, Laplace, GMTCM, BGTCM and MGTCM for the
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first 15 low-frequency ACs along the zigzag order from
JPEG-coded image ‘lenna’ with QF=100.

FIG. 29 illustrates the %> scores and KL divergence scores
by GGD, Laplace, GMTCM, BGTCM and MGTCM for the
first 15 low-frequency ACs along the zigzag order from
JPEG-coded image ‘CS’ with QF=100.

FIG. 30 illustrates the %> scores and KL divergence scores
by GGD, Laplace, GMTCM, BGTCM and MGTCM for the
first 15 low-frequency ACs along the zigzag order from
JPEG-coded image ‘B5’ with QF=100.

FIG. 31 illustrates Algorithm 5: An algorithm for comput-
ing the ML estimate of (y ., b, B) in the bi-segment TCM, in
accordance with an example embodiment.

FIG. 32 illustrates Algorithm 6: A greedy algorithm for
estimating y_., b, and &, in MLTCM, in accordance with an
example embodiment.

FIG. 33 illustrates Algorithm 7: A greedy algorithm for
determining 1 and estimating y_, b, and A in MLTCM, in
accordance with an example embodiment.

FIG. 34 illustrates Algorithm 8: A greedy algorithm for
estimating K, b, and A, in MGTCM, in accordance with an
example embodiment.

FIG. 35 illustrates Algorithm 9: A greedy algorithm for
determining | and estimating K, b, and & in MGTCM from u”,
in accordance with an example embodiment.

FIG. 36 shows Table 10: Overall comparisons between the
BLTCM and GG model for modeling 15 low frequency con-
tinuous DCT coefficients.

FIG. 37 shows Table 11: Overall comparisons between the
LPTCM and GG model for modeling 15 low frequency DCT
coefficients.

FIG. 38 shows Table 12: Overall comparisons between
BGTCM and the GG model for modeling 15 low frequency
DCT coefficients.

FIG. 39 shows Table 13: Overall comparisons between the
GMTCM and GG model for modeling 15 low frequency DCT
coefficients.

FIG. 40 shows Table 14: Overall comparisons between the
MGTCM and BGTCM model for modeling low frequency
DCT coefficients.

Similar reference numerals may be used in different figures
to denote similar components.

DETAILED DESCRIPTION OF EXAMPLE
EMBODIMENTS

In accordance with an example embodiment, there is pro-
vided a method for modelling a set of transform coefficients,
the method being performed by a device and including: deter-
mining at least one boundary coefficient value; determining
one or more parameters of a first distribution model for trans-
form coefficients of the set the magnitudes of which are
greater than one of the boundary coefficient values; determin-
ing parameters of at least one further distribution model for
transform coefficients of the set the magnitudes of which are
less than the one of the boundary coefficient values; and
performing a device operation on at least part of a composite
distribution model which is a composite of the first distribu-
tion model and the at least one further distribution model
having the respective determined parameters.

In accordance with an example embodiment, there is pro-
vided a method for a set of transform coefficients, the method
being performed by a device and including: determining at
least one boundary coefficient value which satisfies a maxi-
mum likelihood estimation between the set of transform coef-
ficients and a composite distribution model which is a com-
posite of a plurality of distribution models each for a subset of
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transform coefficients of the set bounded by each of the at
least one boundary coefficient values; and performing a
device operation on at least one of the subsets of transform
coefficients.

1 Introduction to TCM

Both Laplacian and GG distributions decay exponentially
fast. However, in many cases it is observed herein that DCT
coefficients have a relatively flat tail, which can not be effec-
tively modeled by an exponentially decaying function (see
FIGS. 1-4 and associated description herein below).
Although the tail portion of DCT coefficients is insignificant
statistically, it contains values of large magnitude, which
arguably represent important features or information about
the underlying image, and hence should be handled with care.
Indeed, improvement on modeling the tail portion could lead
to better coding performance, as shown in [ 7] in video coding,
where a Cauchy distribution, which decays much slowly than
Laplacian distributions, was used to derive a rate model and a
distortion model for DCT coefficients in rate control for video
coding, leading to a significant coding gain. However, the
Cauchy model may not model the main portion of DCT
coefficients effectively, and is in general inferior to the GG
model in term of the overall modeling accuracy [4]. There-
fore, in addition to balancing modeling accuracy and model’s
simplicity/practicality, a good model of DCT coefficients also
needs to balance the main portion and tail portion of DCT
coefficients.

To better handle the flat tail phenomenon in DCT coeffi-
cients, in this disclosure, we develop a model dubbed trans-
parent composite model (TCM), in which the tail portion of
DCT coefficients is modeled separately from the main portion
of DCT coefficients by a first distribution, and the main por-
tion is modeled instead by a different parametric distribution
such as truncated Laplacian, GG, and geometric distributions.
This composite model introduces a boundary parameter to
control which model to use for any given DCT coefficient; it
is marked as transparent because there is no ambiguity
regarding which model (the first distribution model or at least
one further distribution model) a given DCT coeflicient will
fall into once the TCM is determined. The TCM is continuous
if each DCT coefficient is regarded continuous (i.e., analog),
and discrete if each DCT coefficient is discrete.

The separate boundary and other parameters of the TCM
can be estimated via maximum likelihood (ML) estimation.
We further propose efficient online algorithms with global
convergence to compute the ML estimates of these param-
eters. Analysis and experimental results show that for real-
valued continuous AC coefficients, (1) the TCM with trun-
cated GG distribution as its parametric distribution
(GGTCM) offers the best modeling accuracy among pure
Laplacian models, pure GG models, and the TCM with trun-
cated Laplacian distribution as its parametric distribution
(LPTCM), at the cost of extra complexity; and (2) LPTCM
matches up to pure GG models in term of modeling accuracy,
but with simplicity and practicality similar to those of pure
Laplacian models, hence having the best of both pure GG and
Laplacian models. On the other hand, for discrete/integer
DCT coefficients, which are mostly seen in real-world appli-
cations of DCT, extensive experiments show via both the
divergence test and Chi-square test that the discrete TCM
with truncated geometric distribution as its parametric distri-
bution (GMTCM) models AC coefficients more accurately
than pure Laplacian models and GG models in majority cases
while having simplicity and practicality similar to those of
pure Laplacian models. In addition, it is demonstrated that the
GMTCM also exhibits a good capability of feature extraction.
Le., DCT coefficients in the flat tail identified by the GMTCM
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are truly outliers, and these outliers across all AC frequencies
of'an image represent an outlier image revealing some unique
global features of the image. This, together with the simplic-
ity of modeling and the low complexity of computing online
the ML estimates of the parameters of the GMTCM, makes
the GMTCM a desirable choice for modeling discrete/integer
DCT coefficients in real-world applications, such as image
and video coding, image understanding, image enhancement,
etc.

2 DCT Models and the Flat Tail Phenomenon

This section first reviews briefly some relevant studies in
the literature for modeling DCT coefficients. We then discuss
the flat tail phenomenon in DCT coefficients.

2.1 Models in the Literature for DCT Coefficients

2.1.1 Gaussian Distributions

As Gaussian distributions are widely used in natural and
social sciences for real-valued random variables, they have
been naturally applied to model DCT coefficients [1]. The
justification for the Gaussian model may come from the cen-
tral limit theorem (CLT) [11], which states that the mean of a
sufficiently large number of independent random variables
will be approximately normally distributed. Consider the lin-
ear weighted summation nature of DCT. The CLT provides a
meaningful guidance for modeling DCT coefficients with
Gaussian distributions. A comprehensive collection of distri-
butions based on Gaussian probability density function were
studied in [8].

Although the Gaussian model is backed up by the CLT, it
was observed that DCT coefficients for natural images/video
usually possess a tail heavier than Gaussian distributions [2].
Consequently, generalized Gaussian distributions have been
suggested for modeling DCT coefficients.

2.1.2 Generalized Gaussian Distributions

The DCT coefficients may be modeled with a generalized
Gaussian distribution with zero mean, as follows

_B -l (65)]

f= T (/B

where a is a positive scale parameter, [ defines a positive
shape parameter, and I'(*) denotes the gamma function.

It is easy to see that when =1, the above GG distribution is
de-generalized to a Laplacian distribution. When =2, it
becomes the Gaussian distribution with variance a.*/2. With
the free choice of the scale parameter o and the shape param-
eter 3, the GG distribution has shown an effective way to
parameterize a family of symmetric distributions spanning
from Gaussian to uniform densities, and a family of symmet-
ric distributions spanning from Laplacian to Gaussian distri-
butions. As mentioned above, DCT coefficient distributions
are observed to posses flat tails. In this regard, the GG distri-
bution allows for either heavier-than-Gaussian tails with f<2,
heavier-than-Laplacian tails with p<1, or lighter-than-Gaus-
sian tails with $>2. As such, with this flexibility, the GG
model outperforms in general both the Gaussian and Lapla-
cian models in terms of modeling accuracy for modeling DCT
coefficients.

Nevertheless, the benefit of accurate modeling by the GG
model comes with some inevitable drawbacks. For example,
the lack of closed-form cumulative distribution function (cdf)
makes it difficult to apply the GG model in practice. Another
main drawback is the high complexity for its parameter esti-
mation. For example, given a sequence of samples
Y,,i=1,. .., n,the ML estimate of the shape parameter [} is the
root of the following equation [2],
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7 B ng BY IYiP
i=1
where

1
Yo :y+f -1 - dr
0

and y=0.577 .. . denotes the Euler constant. Clearly, the terms
=, " I1Y,I*log IY,l and BZ,_,” IY,I? yield a significant amount
of computation when a numerical iterative solution of f is
used.

2.1.3 Laplacian Distributions

Due to its ability to balance modeling accuracy and mod-
el’s simplicity/practicality, the Laplacian model for DCT
coefficients is the most popular one in use [10], [9]. A Lapla-
cian density function with zero mean is given as follows,

1 3
— (28]
fn= e ™

where A denotes a positive scale parameter. Given a sequence
of samples Y,_1, . . ., n, the ML estimate of A can be easily
computed as

@)

A= %Z Y.

In addition, under the Laplacian distribution, the probability
foraninterval [L, H] with H>L=0 can also be computed easily
as

2.1.4 Other Distributions

There are other distributions investigated in the literature
for modeling DCT, [5], [7], [6], [8]- In [5], alpha-stable dis-
tributions were used to model DCT coefficients for water-
mark detection. As a special case of alpha-stable distribu-
tions, Cauchy distribution was used in [7] for modeling DCT
coefficient in video coding. The alpha-stable distributions
were reported to provide a satisfactory modeling accuracy for
the corresponding image processing goals as in [5] and [7].
Yet, the lack of closed-form for the alpha-stable family dis-
tributions usually leads to difficulties for parameter estima-
tion and a limited application for modeling DCT coefficients.
In [6], a symmetric normal inverse Gaussian distribution was
studied for modeling DCT coefficients, as follows:

P AG, K, (aVE +)7) ®)
¥)= N ,
where

1 = 1
K\(&) = Ef z“exp(—zé-‘(z + z’l))dz,
0
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-continued
and
o]

e
—exp(da).
n

A, @) =

This model was tested using the Kolmogorov-Simrnov test
and reported with improved modeling accuracy over General
Gaussian and Laplacian distributions using the Kolmogorov-
Simrnov test. Yet, its complexity is still significantly more
than that of a Laplacian model. Moreover, the Kolmogorov-
Simrnov test is generally regarded as less preferable for mea-
suring the modeling accuracy than the 2 test [2], and by %>
test, the best modeling accuracy is achieved by the GG dis-
tributions. The test statistics %~ is defined as

I (6)

i=1

where I is the number of intervals into which the sample space
is partitioned, n is the total number of samples, n, denotes the
number of samples in the ith interval, and p; is the probability
under the underlying theoretical model that a sample falls into
the interval i.

Similar as in [2], this disclosure prefers the i test over the
Kolmogorov-Simrnov for measuring the modeling accuracy.
Besides the justification provided in [2] for using the y” test,
our preference also roots in the flat-tail phenomena of DCT
coefficients. Specifically, . test better characterized a statis-
tically insignificant tail portion in a distribution while the
Kolmogorov-Simrnov test, which depends on a sample dis-
tribution function, tends to overlook the tail part. Neverthe-
less, the flat-tail phenomena has been widely observed for
DCT coefficients, as in [5], [7]. In the following, more
detailed discussions are present for the flat tail phenomena.

2.2 Flat Tails

Laplacian, Gaussian, and GG distributions all decay expo-
nentially fast. As illustrated in FIGS. 1 and 2, however, DCT
coefficients usually possess a much heavier tail. FIG. 1 was
obtained by applying the floating-point type-II 8x8 DCT to
the well-known 512x512 Lenna image, where the vertical
bars show the histogram of the DCT coefficients. It is evident
from FIG. 1 that the histogram of the DCT coefficients first
decays quite rapidly for the main portion of DCT coefficients
and then becomes relatively flat for the tail portion of DCT
coefficients. Statistically, the tail portion of DCT coefficients
is insignificant. However, it contains DCT coefficients of
large magnitude, which usually have greater impacts on
image quality, image features, quantization, etc. than other
coefficients and hence deserve a better fit in modeling.

FIG. 2 zooms in the tail portion of FIG. 1 and further
compares the histogram of DCT coefficients against the GG
and Laplacian models, where the vertical bars again represent
the histogram of DCT coefficients, and the two illustrated
curves show results from the GG and Laplacian models,
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respectively. In FIG. 2, the ML estimates of the parameters of
the GG model were computed via Matlab codes from [13]
while the A value of the Laplacian model was computed using
(4). For both models, the % tests were performed to evaluate
their respective modeling accuracy. According to the y? test,
the GG model significantly outperforms the Laplacian model.
Furthermore, in each case of FIG. 2, the obtained shape
parameter f§ is much smaller than 1, meaning that the result-
ing GG distribution possesses a tail heavier than that of the
Laplacian distribution. In comparison with the real data his-
togram shown in FIG. 2, however, the GG model still suffers
from an exponentially bounded tail, which is much lighter
than that of the DCT coefficients.

The flat tail phenomenon in the Lenna image is widely
observed in other images as well. As shown in [2], the esti-
mated shape parameter [} for the GG distribution for various
images is less than 1 in most cases, indicating that the data
distribution possesses a tail heavier than that of the Laplacian
distribution. In [7], it was also observed that the tail of DCT
coefficients in video coding is much heavier than that of the
Laplacian distribution, and a Cauchy distribution was used
instead for deriving rate and distortion models for DCT coet-
ficients. However, as mentioned before, the Cauchy model
may not model the main portion of DCT coefficients effec-
tively, and is in general inferior to the GG model in term of the
overall modeling accuracy [4]. Therefore, it is advantageous
to have a model which can balance well the main portion and
tail portion of DCT coefficients while having both simplicity
and superior modeling accuracy.

3 Continuous Transparent Composite Model

To better handle the flat tail phenomenon in DCT coeffi-
cients, we now separate the tail portion of DCT coefficients
from the main portion of DCT coefficients and use a different
model to model each of them. Since DCT coefficients in the
tail portion are insignificant statistically, each of them often
appears once or a few times in the entire image or video
frame. Hence it would make sense to model them separately
by a uniform distribution while modeling the main portion by
a parametric distribution such as truncated Laplacian, GG,
and geometric distributions, yielding a model we call a trans-
parent composite model. In this section, we assume that DCT
coefficients are continuous (i.e. can take any real value), and
consider continuous TCMs.

3.1 Description of General Continuous TCMs

Consider a probability density function (pdf) f(y10) with
parameters &0 where 6 could be a vector, and © is the
parameter space. Let F(yl0) be the corresponding cdf, i.e.

FI0)2 [ _7fu0)du.

Assume that f(yl0) is symmetric in y with respect to the
origin, and F(yl0) is concave as a function of'y in the region
y=0. It is easy to verify that Laplacian, Gaussian, and GG
distributions all satisfy this assumption. The TCM based on F
(y10) is defined as
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7
PO 1 yer b, 6) 2 @
b 0 if
Wﬂy |8) if |yl < ye
1-b
P BR—— if ye<lyl=a
2a-yc)
b P 1-b .
max{ s = F 06 19 sy ) b=
0 otherwise

where O<b=1, 0<d<y_<a, and a represents the largest magni-
tude a sample y can take. Here both a and d are assumed to be
known. It is not hard to see that given (y_, b, 0), as a function
of'y, p(¥ly., b, 0) is indeed a pdf, and also symmetric with
respect to the origin.

According to the TCM defined in (7), a sample y is gener-
ated according to the truncated distribution

1
72F(y6|0)_1f(yl9)

with probability b, and according to the uniform distribution

_r
2(a~-yc)

(also called the outlier distribution) with probability 1-b. The
composite model is transparent since given parameters (y,, b,
0), there is no ambiguity regarding which distribution a
sample y=+y_comes from. At y==xy_, p(yly., b, 0) can be
defined arbitrarily since one can arbitrarily modify the value
ofapdfoverasetof zero Lebesgue measure without changing
its cdf. As shown later, selecting p(yly,, b, 0) at y=+y_to be the
maximum of

b
Wf(yc | 8) and

2a-y.)
will facilitate our subsequent argument for ML estimation.
Hereafter, samples from the outlier distribution will be
referred to as outliers.

3.2 ML Estimate of TCM Parameters

In practice, parameters y_, b, 0 are often unknown and
hence have to be estimated, say, through ML estimation. Let
Y,"=Y,,Y,, ..., Y, beasequence of DCT coefficients in an
image or in a large coding unit (such as a block, a slice or a
frame in video coding) at a particular frequency or across
frequencies of interest. Assume that Y,” behaves according to
the TCM defined in (7) with Y, .2 max{IY,l:1=si=n}<a and
Y,.zd. (When'Y
ML estimate of'y_.and b is equal to d and 1, respectively.) We

<d, there would be no outliers and the

max

next investigate how to compute the ML estimate of'y,, b and
0.
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GivenY,” with d=<Y,,,.<a, let
WACAERIZP AR
Ny(r)# {iy <7}

Na(yo)# (1Y 1=y}
Then the log-likelihood function g(y_,b,01Y,”) according
to (7) is equal to

8er b, 01 Y1) 2 (N2 (D In(1 - b) — In2(a = y )] + (N1 (o)D) ®

{lnb —1n[2F(yc | 0) - 1]} + Z Inf(Y; | 6) +|N3(yc)lmax
ieN (ye)

{in(1 = &) = In2(a — ye), Inb — In[2F(y. | 6) - 1] + Inf (y | O)} =

[N2(ylln(l = b) + I[Ny (ye)llnb + Z Inf(¥; 1 0) + IN3(yc)lmax
ieN) (ve)

{in(1 = £) — In2(a — ye), Inb — In[2F(y. | 6) - 1]+ Inf (y. | )} -

IN2(ye)ln2(a = ye) = [Ny (ye)ln[2F (ye | 6) — 1]

where S| denotes the cardinality of a finite set S, and the
equality 1) is due to (7) and the fact that Inz is strictly increas-
ing in the region z>0. Since F(yl0) is nondecreasing with
respect to y, it follows from (8) that forany Y, , <vy_<a,

g(ye, b, 0| YD) < )

n{lnd — In[2F (Ypar | 0) - 11} + Z Inf(¥; 1 0) < g(Yax, b, 0] YT).
=1
Therefore, we have
max{g(y., b, 0| Y)d<y. <a,0=<b=<1 6=

max{g(ye, b, 0| Y1)d <y, < Yy, 0<b <1, 0}.

To continue, we now sort 1Y, 1, 1Y,I, .. ., 1Y, | in ascending
order into W,=W,= ... =W, . Note that W,=Y .. Let m be
the smallest integer i such that W,=d. Define

L=dW,)

and for any m<i=n,

I=(W:_, W)

Then it is easy to see that the interval [d, Y,,,.] can be

max.

decomposed as

(4 Y =W W1, - FUU,L)
which, together with (9), implies that

maxig(ye, b, 0| Yd <y, <a,0<b=1,0 = (10)

max max max

,b, 0| YD) =
0sh=1 8 yeeldYmax] 80 YD

max max{g(d, b, 01Y7), g(W;, b, 01 YD),

sup [gye, b, 01 Y] im=ix< n}.

ye€l;
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Note that for any nonempty I, with i>m, Ny(y,) and N,(y,.)
remain the same and N;(y,) is empty for all y €I.. Since by
assumption F(yl0) as a function of'y is concave, it is not hard
to verify that as a function of y_.

-IN>(y )l In 2(a-y,)-IN,(y)| In [2F(y,16)-1]

is convex over y_£1,, and hence its value over y €1, is upper
bounded by the maximum of its value aty =W, and y =W,_,,
i.e., the endpoints of I,. Therefore, in view of (8), we have

sup lg(ye, £, 01 YP)] < max{g(W;_y, b, 0| Y]), g(W, b, 0| Y1)} an
Yc€lj
When I, is nonempty, a similar argument leads to
sup [g(ye, b, 01 Y1)] < maxig(d, b, 0] Y]), g(Wm, b, 6| YT)}. 12
Ye€im
Putting (10) to (12) together yields
maxig(ye, b, 0| Yd <y, <a,0<b=1,60 = (13)

rr;%x max{g(d, b, | Y}), g(W;, b, 0| Y{)m <i<n}.

Therefore, the ML estimate of y_ is equal to one of d, W,
w , W

m+ls n

We are now led to investigating
b, 0|17
r%%Xg(yc, » 01 17)

for each y. € {d, Wi, Wini1s .., Wyl

Let

Ni (o) 24 1Y)l < yo)

N3 (yo) 2{it ye <Yl

(bye), 8(ye)) = {
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Further define

g (e by 01 Y £ (N0 )DIIn(1 - b) — In2{a - yo)] + )

(IN{ (e)MInb — In[2F (y. | ) — 11} + Z Inf(¥; 16)
ieNT ()

and

& e b, 01 YD) 2 INF (D lIn(l - b) - In2(a - y)] + )

(IN{(y)I{Inb — In[2F (y. | 0) — 11} + Z Inf(¥;10).
ieNy (ve)

Note that the difference betweeng*(y_, b, 01Y,”)and g™ (y ..,
b, 01Y,”) lies in whether or not we regard y_. itself as an outlier
when y,_ is equal to some W,. Comparing (8) with (14) and
(15), we have

80er b, 01 Y1) = maxig* (ye, b, 01 Y1), & (ve, b, 01 Y1)} (16)

and hence

maxg(ye, b, 01 ¥f) = an

max{rr;zxg*(yc, b, 01 YD), n;%x g (e, b, 0| YIL)}-
Let
(Blye), B(ye)) = argmaxy, o g(ye, b, 0 Y1)
(0" (o). 0" (ye)) = argmargp g* (e b, 0| ¥7)
(™ (o). 07 (ye)) = argma, g g~ (e, b, 0] Y7).

Then from (14) and (15), it is not hard to see that

INT (yo)l (18)

NG
b 0 = PO g gy, = P10

and 6%(y,) and 07 (y,.) are the ML estimate of 8 for the trun-
cated distribution

1
— . _fiye
oo’ 01

over the sample sets {Y;:i€EN,*(v.)} and {Y:iEN,(y,)},
respectively. In view of (17), one can then determine (b(y,),

0(y.)) by setting

(B (), 67 () 3 & (e, b7 TG YD) 2 87 (s 6700, 07 () 1 YD)
(b7 (¥e) 6 (yc)) otherwise.
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Finally, the ML estimate of (y_, b, 8) can be determined as
8o b))

yA=argmax, ciaw,. ..
b*=b(y*)

0*=0(y,).

Summarizing the above derivations into Algorithm 1 (FIG.
12) for computing (y_*,b*,06%), we have proved the following
result.

Theorem 1: The vector (y_*, b*, 6%) computed by Algo-
rithm 1 is indeed the ML estimate of (y_, b, 8) in the TCM
specified in (7).

Remark 1: When implementing Algorithm 1 for a sequence
{Y,},_17 of DCT coefficients with a flat tail as shown in FIGS.
1 and 2, one can choose ato beY,, . and apply Algorithm 1 to
the sample set {Y,: 1Y,I<Y,,,,., 1=i=n}. As for the selection of
d>0, it follows from Algorithm 1 that the larger d is, the less
computation Algorithm 1 would have. In our experiments, we
have found that choosing d>0 such that n-m is around 20% of
n is a good choice since the flat tail portion is normally not
significant statistically and would contain less than 20% of
the total samples.

Depending on whether or not Step 6 in Algorithm 1 can be
implemented efficiently, the computation complexity of
Algorithm 1 varies from one parametric family f(yl0) to
another. For some parametric family f(yl0) such as Laplacian
distributions, Step 6 can be easily solved and hence Algo-
rithm 1 can be implemented efficiently. On the other hand,
when (y10) is the GG family, Step 6 is quite involved. In the
next two subsections, we will examine Step 6 in two cases: (1)
f(y10) is the Laplacian family, and the corresponding TCM is
referred to as the LPTCM; and (2) {(y10) is the GG family, and
the corresponding TCM is referred to as the GGTCM.

33 LPTCM

Plugging the Laplacian density function in (3) into (7), we
get the LPTCM given by

0)

P 1 ye b, ) 2 @b
b 1

— i :

(= if |yl < ye
1-b " N

_— if ye<lyl=a
2a-yo) o=l

b 1 1-b

i £ =

rnaX{1 s LA Z(a—yc)} if |yl = ye
0 otherwise.

With reference to Step 6 in Algorithm 1, let S be either
N, *(y.) orN,(y_). Then Step 6 in Algorithm 1 is equivalent to
determining the ML estimate (denoted by A, ) of A in the
truncated Laplacian distribution

L1 22
1—e /21

0 otherwise

if |yl <y,
p(ymé{ =

from the sample set {Y,:i=S}. Since |Y,I<y.,. for any iES, the
log-likelihood function of the sample set {Y;i€S} with
respect to p(ylA) is equal to

LY 2 ZIS|[In22 + In(l — e7e)] — %Z Y.
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10

15

20

25

30

35

40

45

50

55

60

16

-continued

Then we have

Ayc = argmaxp=azo L(A).

It is not hard to verify that L(1/t) as a function of t>0 is
strictly concave. Computing the derivative of L(A) with
respect to A and setting it to 0 yields

e LS @)
ieS
It can be shown (see the proof of Theorem 2 below) that
is a strictly increasing function of A>0, and
24

. . Ye
/\lirg}r s(A) =0 and /\hﬁrgs(/l) =3
Let

1
C= EZ I¥il.

ies

Then it follows that (1) when C=0, A, 0, in which case the
corresponding truncated Laplacian distribution is de-gener-
ated to a delta function; (2) when Czy /2, A, =, in which
case the corresponding truncated Laplacian distribution is
de-generated to the uniform distribution over [-y,, y.], and

(3) when 0<C<y /2, A, is equal to the unique root to (23).

We are now led to solving (23) when 0<C<y /2. To this end,
we developed the iterative procedure described in Algorithm
2 (FIG.13).

Theorem 2 below shows that Algorithm 2 converges expo-
nentially fast when 0<C<y /2.

Theorem 2: Assume that 0<C<y /2. Then A, computed in
Step 9 of Algorithm 2 strictly increases and converges expo-
nentially fasttox,

Proof: Define

i—s00,

Ve e Y/t
FA) =A— T &

It is not hard to verify that the derivative of r()) with respect
toAis

e 2 (26)

el e

0

for any A>0. Therefore, r(}) is strictly increasing over A>0.

Since h,=C>0, it follows from (25) that A, >A,. In general,
for any iz1, we have
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1 — e Yelki 1 — e Y-y
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=Je e’ — 1 erliel —1
which implies that A, ; —A,>0 whenever A,—A,_;>0. By math-

ematic induction, it then follows that A, strictly increases as i
increases.

We next show that all A, i=1, are bounded. Indeed, it
follows from (25) that

Ve Le Vel
) =4; = Toovhi =
=4 =il
<0

which, together with (26) and the fact that r(h,, )=0, implies
that A<, . Therefore A, converges as i—. Letting i— in
(25) yields

lima; = 4y,

isoo

28

All remaining is to show that the convergence speed in (28)
is exponentially fast. To this end, let

e Vel

A
d= max

\2
Ag=A=dy, m(%) ’

Then it follows from (26) that 8<1. This, together with (27),
implies that

M1 =h=d(hh_y)

for any i=1, and hence A, converges to A, exponentially fast.
This completes the proof of Theorem 2.

Plugging Algorithm 2 into Step 6 in Algorithm 1, one then
gets an efficient algorithm for computing the ML estimate of
(Y b, &) in the LPTCM. To illustrate the effectiveness of the
LPTCM, the resulting algorithm was applied to the same
DCT coefficients shown in FIG. 1. FIG. 3 shows the resulting
LPTCM against the histogram of DCT coefficients on the
whole in each respective case. FIG. 4 further zooms in the tail
portion of FIG. 3. From FIGS. 3 and 4, it is clear that the
LPTCM fits the histogram of DCT coefficients quite well and
greatly improves upon the Laplacian model in each case. In
comparison with the Laplacian model, it fits both the main
and tail portions better. In terms of i values, it matches up to
the GG model. More detailed comparisons will be presented
in Section 5.
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3.4 GGTCM
Plugging the GG density function in (1) into (7), we get the
GGTCM given by

PO | Yo by o B) 29)
B wwes i 1yl <
2071/ B. (e P it bl <y
— if yo<lyl=a
2(a~-y.)
e L2l
m TR TP Tasag) ey
0 otherwise
where y(s,x) is defined as
Wsx) 25 e

With reference to Algorithm 1, in this case, Step 6 in
Algorithm 1 is equivalent to determining the ML estimate
(denoted by (e, , 8,,)) of (c,f3) in the truncated GG distribu-
tion

B ) (B0
A e
pyle, B =1 2ay(1/ B, (ye/a)P)

0 otherwise

if |yl < ye

from the sample set {Y,:i€S}. Since |Y,I<y.. for any i8S, the
log-likelihood function of the sample set {Y;:i€S} with
respect to p(y la,f) is equal to

Lo, B) 4 |S|[lnﬁ— anw—an(%,s (%)ﬁ]] _Z |g|ﬁ'

ieS
Therefore

(@ycs By ) = argmaxy s Lia, B).

Computing the partial derivatives of L(ct,}) with respect to
a and f and setting them to zero yields

52

ies

Y; 31

Ye

1
-=p

r

B At
TR, n}

7
f YA eV Inydy
0

y(1/B. 0

182 B

¥;
JENTE
18T 2
;

Yo

Y;

=lnr — n|—
F Ye

es

where t=(y /a)P. One can then take a solution to (31) as (@,

By,):

yCUnlike the case of LPTCM, however, solving (31) does not
seem to be easy. In particular, at this point, we do not know
whether (31) admits a unique solution. There is no developed
algorithm with global convergence to compute such a solu-
tion either even if the solution is unique. As such, Step 6 in
Algorithm 1 in the case of GGTCM is much more compli-
cated than that in the case of LPTCM.

Suboptimal alternatives are to derive approximate solu-
tions to (31). One approach is to solve the two equations in
(31) iteratively, starting with an initial value of p given by (2):
(1) fix f and solve the first equationin (31); (2) fix e and solve
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the second equation in (31); and (3) repeat these two steps
until no noticeable improvement can be made. Together with
this suboptimal solution to (31), Algorithm 1 was applied to to
the same DCT coefficients shown in FIG. 1. FIG. 3 shows the
resulting GGTCM against the histogram of DCT coefficients
on the whole in each respective case. We note that the result-
ing GGTCM improves on the GG model marginally, which
may be due to the suboptimal solution to (31).

4 Discrete Transparent Composite Model

Though DCT in theory provides a mapping from a real-
valued space to another real-valued space and generates con-
tinuous DCT coefficients, in practice (particularly in lossy
image and video coding), DCT is often designed and imple-
mented as a mapping from an integer-valued space (e.g.,
8-bits pixels) to another integer-valued space and gives rise to
integer DCT coefficients (e.g., 12-bits DCT coefficients in
H.264). In addition, since most images and video are stored in
a compressed format such as JPEG, H.264, etc., for applica-
tions (e.g., image enhancement, image retrieval, image anno-
tation, etc.) based on compressed images and video, DCT
coefficients are available only in their quantized values.
Therefore, it is desirable to establish a good model for dis-
crete (integer or quantized) DCT coefficients as well.

Following the idea of continuous TCM, in this section we
develop a discrete TCM which partitions discrete DCT coet-
ficients into the main and tail portions, and models the main
portion by a discrete parametric distribution and the tail por-
tion by a discrete uniform distribution. The particular discrete
parametric distribution we will consider is a truncated geo-
metric distribution, and the resulting discrete TCM is referred
to as the GMTCM. To provide a uniform treatment for both
integer and quantized DCT coefficients, we introduce a quan-
tization factor of step size. Then both integer and quantized
DCT coefficients can be regarded as integers multiplied by a
properly chosen step size.

4.1 GMTCM

Uniform quantization with dead zone is widely used in
image and video coding (see, for example, H.264 and
HEVC). Mathematically, a uniform quantizer with dead zone
and step size q is given by

0(xX) =quign(X)Xr0und(w]

where q/2=A<q. Its input-output relationship is shown in F1G.
5. Assume that the input X is distributed according to the
Laplacian distribution in (3). Then the quantized index

sign(X)x round(w]

is distributed as follows

(B2

With the help of q, discrete (integer or quantized) DCT
coefficients then take values of integers multiplied by q.
(Hereafter, these integers will be referred to as DCT indices.)
Note that p, in (32) is essentially a geometric distribution.

20

Using a geometric distribution to model the main portion of
discrete DCT coefficients, we then get the GMTCM given by

5 po=bp (33)
1 )
pi=b(1- p)3l1 —e e R0 S K) it i= 1,20, ., 2K
1-b ‘ .
piz—Z(a—K) if K<l|ij<a

10

where O=p=1 is the probability of the zero coefficient, O<bx1,
1=K=a, and a is the largest index in a given sequence of DCT
indices. Here a is assumed known, and b, p, A and K are model
15 parameters.
4.2 ML Estimate of GMTCM Parameters
4.2.1 Algorithms
Let u"=u,, u,, . . . , u, be a sequence of DCT indices.
Assume thatu” behaves according to the GMTCM defined by
20 (33)withu,,,, 2 max{lu,l: 1si=n}=a. We now investigate how
to compute the ML estimate (b*,p* A% K*) of (b,p,A,K) from

i

u.

Let
25 No={j:u=0}, N (K)={j:0<Iu;|<K}, and
Ny(K)={j:lu)>K}.
The log-likelihood function of u” according to (33) is equal
to
30
GK, A, b, p) & 34
IN2(K)lIn(1 = b) + (|No| + N1 (K)Dnb + [No|lnp + [Ny (K)[In(1 — p) —
q
l—-e q
[N2(K)|In2(a — K) + [N (Kl ———Fp— - = (lerjl = 1).
33 21~ e’%’() ’Ije/vzl;l() !
Then we have
(o, p*, A, K*) = argmaxy, 2 x G(K, A, b, p). (35)
40
For any 1=K=<a, let
l-et
—e g
45 LK. ) & [N (K)lln———— — = (sl = 1)
21~ e’%’() ’Ije/vzl;l() !
and
(B(K), p(K), Ax) = argmasy p1 G(K, A, b, p).
50
In view of (34), one can verify that
Nol + [N (K 36
o b(K):l ol Ll( )] (36)
[Nol
Ky=— "
PR = N ]
and whenever K > 1,
60 Ag = argmaxpsrzeo LK, A).

When K=1, G(K,A,b,p) does not depend on A and hence A,
can selected arbitrarily.

We are now led to determining A, for each 1<K<a. At this
point, we invoke the following lemma, which is proved in
Appendix A (below).

65
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Lemma 1: Let

e’ Ke X

A
0= T ST R

Then for any

1<K=<aIK, g)

as a function of t>0 is strictly concave, and for any K>1, g(t)
is strictly decreasing over t&(0,00), and

. K-1 .
lim g(7) = —— and limg() =0,
10t 2 100

Computing the derivative of L(K,A) with respect to A and
setting it to O yields

eI e Kai 37
T—em KT—emn —€=0
where
c=_L_ >0 G-,
|N1(K)|j€N1(K)

In view of Lemma 1, then it follows that (1) when C=0,
Ae=0; (2) when

and (3) when

0<C<K_1
5

is the unique solution to (37). In Case (3), the iterative pro-
cedure described in Algorithm 3 (FIG. 14) can be used to find
the unique root of (37).

Combining the above derivations together, we get a com-
pete procedure for computing the ML estimate (b*, p*, A%,
K*) of (b, p, A, K) in the GMTCM, which is described in
Algorithm 4 (FIG. 15).

Remark 2: When implementing Algorithm 4 for actual
DCT indices {u,: 1=i=n} with flat tail, there is no need to start
Algorithm 4 with K=1. Instead, one can first choose K, such
that IN, (K,)! is a fraction of n and then run Algorithm 4 for
K€E[K,, a]. In our experiments, we have found that choosing
K, such that IN,(K,)! is around 20% of n is a good choice.

4.2.2 Convergence and Complexity Analysis

In parallel with Algorithm 2, Algorithm 3 also converges
exponentially fast when 0<C<(K-1)/2. In particular, we have
the following result, which is proved in Appendix B (below).

Theorem 3: Assume that 0<C<(K-1)/2. Then A® com-
puted in Step 12 of Algorithm 3 strictly increases and con-
verges exponentially fast to A, as i—>co.

The complexity of computing the ML estimate of the
GMTCM parameters comes from two parts. The first partisto
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evaluate the cost of (34) over a set of K. The second part is to
compute A for every K using the Algorithm 3. Note that C in
Algorithm 3 can be easily pre-computed for interesting values
of K. Thus, the main complexity of Algorithm 3 is to evaluate
the two simple equations in (38) for a small number of times
in light of the exponential convergence, which is generally
negligible. Essentially, the major complexity for the param-
eter estimation by Algorithms 3 and 4 is to collect the data
histogram {h,j=1, ..., a} once. Compared with the complex-
ity of solving (2) for GG parameters, where the data samples
and the parameters to be estimated are closely tied together as
in the =,_,"Ix,I® log Ix,| term and the BZ,_,”Ix,I? term, the
complexity of parameter estimation in the case of GMTCM is
significantly lower.

Remark 3: In our discussion on TCMs for DCT coefficients
so far, DCT coefficients are separated into two portions: the
main portion and tail portion. As will be apparent to one
skilled in the art, the main portion could be further separated
into multiple sub-portions with each sub-portion modeled by
a different parametric distribution. The resulting TCM would
be called a multiple segment TCM (MTCM), described in
greater detail below. In addition, the tail portion could be
modeled by another parametric distribution such as a trun-
cated Laplacian, GG, or geometric distribution as well since
a uniform distribution is a de-generated Laplacian, GG, or
geometric distribution.

Remark 4: Although we have used both continuous and
discrete DCT coefficients as our data examples, all TCM
models discussed so far are applied equally well to other types
of data such as wavelet transform coefficients, prediction
residuals arising from prediction in predictive coding and
other prediction applications, and data which is traditionally
modeled by Laplacian distributions.

5 Experimental results on Tests of Modeling Accuracy

This section presents experimental results obtained from
applying TCMs to both continuous and discrete DCT coeffi-
cients and compare them with those from the Laplacian and
GG models.

5.1 Test Materials and Performance Metric

Two criteria are applied in this disclosure to test modeling
accuracy: the y test, as defined in (6), and the divergence
distance test defined as follows

/ 40)
_ 1P
d= Z ptlnq‘_ ,
i=1

where I is the number of intervals into which the sample space
is partitioned in the continuous case or the alphabet size of a
discrete source, p, represents probabilities observed from the
data, and q, stands for probabilities obtained from a given
model. Note that p,=0 is dealt with by defining 0 1In 0=0.
Three sets of testing images are deliberately selected to
cover a variety of image content. The first set, as shown in
FIG. 6, includes 9 standard 512x512 images with faces, ani-
mals, buildings, landscapes, etc, referred to as, from left to
right and row by row, ‘bird’, ‘boat’, ‘fish’, ‘couple/Cp’, “hill’,
‘lenna’, ‘baboon/Bb’, ‘mountain/Bt’, and ‘pepper/Pp’,
respectively. The second set, as shown in FIG. 7, has five high
definition (1920x1080) frames selected from the first frame
of each class-B sequences used for HEVC standardization
tests [3], and referred to as, from left to right, ‘B1°, ‘B2’, ‘B4’,
and ‘B5’, respectively. The third set, as shown in FIG. 8, is
taken from the first frame of four class-F sequences used for
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HEVC screen content tests, and referred to as, from left to
right, ‘SE’, ‘SS’, ‘CS’, and ‘BbT”, respectively.

Tests for continuous DCT coefficients were conducted by
computing 8x8 DCT using floating point matrix multiplica-
tion. In our tests for discrete DCT coefficients, a raw image
was first compressed using a Matlab JPEG codec with various
quality factors (QF) ranging from 100, 90, 80, to 70; the
resulting quantized DCT coefficients and corresponding
quantization step sizes were then read from obtained JPEG
files.

Tests were carried out for five different models: the Lapla-
cian model, GG model, GGTCM, LPTCM, and GMTCM.
Due to its high computation complexity, GGTCM was
applied only to continuous DCT coefficients. On the other
hand, GMTCM is applicable only to discrete coefficients. The
Laplacian and GG models were applied to both continuous
and discrete DCT coefficients; the same parameter estimation
algorithms, (4) for the Laplacian model and (2) for the GG
model, were used for both continuous and discrete DCT
coefficients.

5.2 Overall Comparisons for Each Image

In the continuous case, the GGTCM outperforms the GG
model, the LPTCM outperforms the Laplacian model, and the
GG models outperforms the Laplacian model in general, as
one would expect. An interesting comparison in this case is
between the GG model and LPTCM. Table 1 (FIG. 16) shows
the percentage w. 2 of frequencies among 63 AC positions that
are in favor of the LPTCM over the GG model for each of 9
images in Set 1 in terms of the %> metric. For example, for the
image ‘bird’, in terms of the y* metric, the LPTCM is better
than the GG model for 62 out of 63 frequencies; for the image
‘lenna’, the LPTCM is better than the GG model for 42 out of
63 frequencies. Overall, it would be fair to state that the
LPTCM and GG model behave similarly in terms of model-
ing accuracy. And yet, the LPTCM has much lower compu-
tation complexity than the GG model.

In the discrete case, comparisons were conducted among
the GMTCM, GG model, and Laplacian model in terms of
both the divergence distance and y” value. As expected, the
GMTCM is always better than the Laplacian model accord-
ing to both the divergence distance and > value, and hence
the corresponding results are not included here. For the com-
parison between the GMTCM and GG model, results are
shown in Tables 2, 3, 4, and 5 for quantized DCT coefficients
from JPEG coded images with various QFs, where w, stands
for the percentage of frequencies among all tested AC posi-
tions that are in favor of the GMTCM over the GG model in
terms of the divergence distance, and w, 2 has a similar mean-
ing but in terms of the y* value. In Tables 2, all 63 AC
positions were tested; in Tables 3, 4, and 5, all AC positions
with 6 or more different non-zero AC coefficient magnitudes
were tested. These tables show that when all quantization step
sizes are 1, corresponding to QF=100, the comparison
between the GMTCM and GG model is similar to that
between the LPTCM and GG model, i.e., their performances
are close to each other. However, with quantization step sizes
increasing, the GMTCM starts to outperform the GG model
significantly, as shown in Tables 3, 4, and 5, for all tested
images.

5.3 Comparisons of %> Among Three Models for Indi-
vidual Frequencies

In the above overall comparisons, Table 2 (FIG. 17) shows
that the GMTCM and GG model are close, while the
GMTCM wins the majority over the GG model for all other
cases as shown in Tables 3-5 (FIGS. 18-20). We now zoom in
to look at the %> values for all tested frequency positions for
several representative images: (1) ‘bird” which is strongly in

10

15

20

25

30

35

40

45

50

55

60

65

24

favor ofthe GMTCM in Table 2; (2) ‘CS’ which is strongly in
favor of'the GG model in Table 2; and (3) “boat’ for which the
GMTCM and GG model tie more or less in Table 2. The
respective > values are presented in Tables 6, 7, and 8,
respectively. Table 6 (FIG. 21) shows the x"2 distances by the
GG model, GMTCM, and Laplacian model for all 63 ACs
from JPEG-coded image ‘bird” with QF=100. Table 7 (FIG.
22) shows the ("2 distances by the GG model, GMTCM, and
Laplacian model for all 63 ACs from JPEG-coded image
‘boat” with QF=100. Table 8 (FIG. 23) shows the "2 dis-
tances by the GG model, GMTCM, and Laplacian model for
all 63 ACs from JPEG-coded image ‘CS’ with QF=100.
From Tables 6, 7, and 8, it is fair to say that (1) the GMTCM
dramatically improves the modeling accuracy over the Lapla-
cian model; (2) when the GMTCM is better than the GG
model, Y gaeas 15 often much smaller, up to 15658 tunes
smaller, than y;;5”; and (3) when the GG model is better
than the GMTCM, the difference between Y ;area, and
Yo is not as significant as one would see in Case (2)—for

example, in Table 8, ;sp” is only up to 9 times smaller than
Aorerers -

Another interesting result is observed in Table 9 (FIG. 24),
which shows the y? values for JPEG coded ‘CS’ image with
QF=90. Compared with the case where the source is JPEG
coded with smaller step size QF=100 as shown in Table 8,
most ACs now show better modeling accuracy by the
GMTCM than by the GG model when the quantization step
size increases.

6 Applications

This section briefly discusses applications of TCM in vari-
ous areas such as data compression and image understanding.
For example, as shown in FIG. 25, a computer device 2500
can be used to implement the methods of example embodi-
ments described herein. The computer device 2500 can
include a controller 2502 or processor operably coupled to,
for example, a memory 2504, a communication subsystem
2506, a display 2508, and other input or output devices 2510.
The controller can include modules configured to implement
an encoder 2512 and/or a decoder 2514, in accordance with
example embodiments. The communication subsystem 2506
can be used to access DCT coefficients stored in a second
device or server, for example. The communication subsystem
2506 can be used to send communications to another device.

6.1 Data Compression

As DCT is widely used in image/video compression, e.g. in
JPEG, H.264, and HEVC, an accurate model for DCT coef-
ficients would be helpful to further improvement in compres-
sion efficiency, complexity, or both in image/video coding.

6.1.1 Lossless Coding Algorithm Design

Entropy coding design in image and video coding such as
JPEG, H.264 and HEVC is closely related to understanding
the DCT coefficient statistics, due to the wide application of
DCT inimage and video compression. The superior modeling
accuracy by TCM has been utilized by us to design an entropy
coding scheme for discrete DCT coefficients (such as in JPEG
images). Specifically, GMTCM parameters are calculated
and coded for each frequency. Then, a bit-mask is coded to
identify outliers, so that outliers and DCT coefficients within
the main portion can be further coded separately with their
respective context modeling. For DCT coefficients within the
main portion, parameters of the truncated geometric distribu-
tions are encoded and then used to further improve the coding
efficiency. In spite of the overhead for coding outliers flags,
the new entropy codec shows on average 25% rate saving
when compared with a standard JPEG entropy codec for high
fidelity JPEG images (with quantization step size being 1 for
most low frequency AC positions), which are significantly
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better than other state-of-the-art lossless coding methods for
DCT coefficients [15] and for gray-scale images [16]. A suit-
able decoder can implement at least some or all of the func-
tions of the encoder, as an inverse.

6.1.2 Lossy Coding Algorithm Design

Quantization design, as the core of lossy coding, roots in
the rate distortion theory, which generally requires a statistic
model to provide guidance to practical designs. Quantization
design in DCT-based image and video coding usually
assumes a Laplacian distribution due to its simplicity and fair
modeling accuracy [12]. Since the LPTCM improves dra-
matically upon the Laplacian model in terms of modeling
accuracy while having similar simplicity, it has been applied
by us in to design quantizers for DCT coefficients and a
DCT-based non-predictive image compression system,
which is significantly better than JPEG and the state-of-the-
art DCT-based non-predictive image codec [14] in terms of
compression efficiency and compares favorably with the
state-of-the-art DCT-based predictive codecs such as H.264/
AVCintra coding and HEVC intra coding in high rate cases in
terms of the trade-off between compression efficiency and
complexity.

For example, as shown in FIG. 25, the controller 2502 can
be configured to implement an encoder 2512. For example, an
image/video encoder can include three steps: forward DCT
(FDCT), quantization, and lossless encoding. The encoder
first partitions an input image into 8x8 blocks and then pro-
cesses these 8x8 image blocks one by one in raster scan order.
Each block is first transformed from the pixel domain to the
DCT domain by an 8x8 FDCT. A TCM model having respec-
tive parameters is generated which models the DCT coeffi-
cients. The resulting DCT coefficients are then quantized
based on the determined TCM model. In an example embodi-
ment, as shown, the quantization can be optimized using the
determined TCM model. The DCT indices from the quanti-
zation are encoded in a lossless manner, for example, based
on the determined TCM model again. The encoded DCT
indices along with parameters of the determined TCM model
are finally either saved into a compressed file or sent to the
decoder. If the original input image is a multiple component
image such as an RGB color image, the pipeline process of
FDCT, quantization, and lossless encoding is conceptually
applied to each of its components (such as its luminance
component Y and chroma components Cr and Cb in the case
of RGB color images) independently.

6.2 Image Understanding

Image understanding is another application for DCT coet-
ficient modeling. It is interesting to observe that in natural
images the statistically insignificant outliers detected by the
GMTCM carry perceptually important information, which
shed lights into DCT-based image analysis.

6.2.1 Featured Outlier Images Based on GMTCM

One important parameter in the GMTCM model is the
cutting point y_=Kq between a parametric distribution for the
main portion and the uniform distribution for the flat tail
portion. Statistically, the outlier coefficients that fall beyond
y..into the tail portion are not significant—although the actual
number of outliers varies from one frequency to another and
from one image to another, it typically ranges in our experi-
ments from less than 0.1% of the total number of AC coeffi-
cients to 19% with an average around 1.2%. However, from
the image quality perception perspective, the outliers carry
very important information, as demonstrated by FIGS. 9, 10
and 11.

FIGS. 9-11 each include an original image, a so-called
inlier image, and a so-called outlier image. An inlier image is
generated by first forcing all outlier coefficients to zero and
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then performing the inverse DCT. An outlier image, on the
other hand, is generated by first keeping only outliers, forcing
all other DCT coefficients to zero, and then performing the
inverse DCT. Three original images are taken from the three
test sets with one from each set to show the perceptual impor-
tance of their respective outliers.

As the inlier image contains all DC components and inlier
AC components, a down-sizing operation would impact our
perception on the difference between the original image and
the inlier image. Hence, FIGS. 9-11 are presented in a possi-
bly large size. In FIG. 9, the outlier image captures most
structural information as the railing. In FIG. 10, the outlier
image shows a fine sketch of the face, while the inlier image
with all statistically significant coefficients shows an undes-
ired quality, particularly with the blurring of eyes. In FIG. 11,
the basketball net is well sketched in the outlier image, but is
much blurred in the inlier image. From these figures, it is
evident that the tail portion is perceptually important. This,
together with the statistical insignificance of outliers, makes
the outlier image appealing to image understanding. On one
hand, compared with the original image, the outlier image
achieves dramatic dimension reduction. On the other hand,
due to the preservation of perceptually important global infor-
mation of the original image in the outlier image, some
aspects of image understanding can be carried out instead
from the outlier image with perhaps better accuracy and less
computation complexity.

It is interesting to show the information rate for outliers,
i.e., how many bits are needed to represent outlier images. We
have also applied TCM to enhance entropy coding design for
DCT coefficients, where outliers are encoded separately from
inliers. It is observed that outliers only consume about 5% of
the total bits.

Finally, it is worthwhile to point out that outlier images are
related to, but different from conventional edge detection. An
outlier image captures some global uniqueness in an image,
while edges are usually detected based on local irregularity in
the pixel domain. For example, the large area of vertical
patterns on the left-top corner of FIG. 9 is not captured as
outliers because those vertical patters repeat themselves
many times in the image, while it shows up as edges.

6.2.2 Image Similarity

Similarity measurement among images plays a key role in
image management, which attracts more and more attention
in industry nowadays due to the fast growth of digital pho-
tography in the past decade. One application of DCT models
is to measure the similarity among images by estimating the
model parameters of different images and calculating a dis-
tribution distance. Because DCT coefficients well capture
some spatial patterns in the pixel domain, e.g., AC, reflecting
avertical pattern and AC; preserving a horizontal pattern, the
distribution distance between DCT coefficient models well
represents the similarity between two images. Apparently,
this type of similarity measurement roots in data histogram.
Yet, in practice, histogram is not a good choice to be used, as
it requires a flat overhead. This is particularly problematic for
a large scale image management system. On the other hand,
model-based distribution distances use only a few parameters
with negligible overhead, thus providing a good similarity
measurement between digital images particularly when the
modeling accuracy is high. The inventors have studied along
this line to use the GMTCM for image similarity and show
promising performance.

The outlier images shown and discussed in Subsection
6.2.1 can be used to further enhance image similarity testing
based on model-based distribution distances. Since outliers
are insignificant statistically, their impact on model-based
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distribution distances may not be significant. And yet, if two
images look similar, their respective outlier images must look
similar too. As such, one can build other metrics based on
outlier images to further enhance image similarity testing. In
addition, an outlier image can also be used to detect whether
a given image is scenic and to help improving face detection.
These and other applications using the GMTCM are contem-
plated as being within the scope of the present disclosure.

Reference is now made to FIG. 26, which shows an
example method 2600 for modelling a set of transform coet-
ficients, for example implemented by the device 2500 (FIG.
25) or a plurality of devices, in accordance with an example
embodiment. At event 2602, the method 2600 includes deter-
mining at least one boundary coefficient value, for example
using maximum likelihood estimation 2610. At event 2604,
the method 2600 includes determining one or more param-
eters of a first distribution model, for example a uniform
distribution model or other model, for transform coefficients
of'the set the magnitudes of which are greater than one of the
boundary coefficient values. At event 2606, the method 2600
includes determining parameters of at least one further dis-
tribution model, such as at least one parametric distribution
model, for transform coefficients of the set the magnitudes of
which are less than the one of the boundary coefficient values.
The events 2602, 2604, 2606 are illustrated with double-
arrows because of the co-dependence between the variables
or parameters of the events 2602, 2604, 2606, including any
iterative processes.

From the method 2600, a composite distribution model can
be defined as a composite of the first distribution model (e.g.
uniform distribution model) and the at least one further dis-
tribution model having the respective determined parameters.
Atevent 2608, the method 2600 includes performing a device
operation on at least part of the composite distribution model.
For example, the device operation may be implemented on
one of the distribution models but not the others. In an
example embodiment, the device operation is performed on
the entire composite distribution model.

In an example embodiment, the at least one parametric
distribution model includes at least one of: a Laplacian dis-
tribution model, a generalized Gaussian model, and a geo-
metric distribution model.

Referring to event 2608, in some example embodiments,
the device operation includes at least one of storing on a
memory, transmitting to a second device, transmitting to a
network, outputting to an output device, displaying on a dis-
play screen, improving data compression of the set of trans-
form coefficients using the composite distribution model,
determining image similarity between different images by
comparing at least part of the composite distribution model,
determining a goodness-of-fit between the composite distri-
bution model and the set of transform coefficients, and gen-
erating an identifier which associates the composite distribu-
tion model with the set of transform coefficients.

The set of transform coefficients includes: discrete cosine
transform coefficients, Laplace transform coefficients, Fou-
rier transform coefficients, wavelet transform coefficients,
prediction residuals arising from prediction in predictive cod-
ing and other prediction applications, or data which is tradi-
tionally modeled by Laplacian distributions. The set of trans-
form coefficients can be generated in real-time (e.g. from a
source image or media file), obtained from the memory 2504
(FIG. 25) or from a second device.

Reference is still made to FIG. 26, which illustrates another
example method 2600 for a set of transform coefficients using
TCM, for example implemented by the device 2500 (FIG.
25), in accordance with an example embodiment. In an
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example embodiment, the method 2600 can be used to filter
the set of transform coefficients which are bounded by one of
the boundary coefficient values, for example.

At event 2610, the method 2600 includes determining at
least one boundary coefficient value which satisfies a maxi-
mum likelihood estimation between the set of transform coef-
ficients and a composite distribution model which is a com-
posite of a plurality of distribution models each for a subset of
transform coefficients of the set bounded by each of the at
least one boundary coefficient values. This can include deter-
mining one or more parameters of a first distribution model,
for example at least one uniform distribution model, for trans-
form coefficients of the set the magnitudes of which are
greater than one of the boundary coefficient values. This can
include determining parameters of at least one further distri-
bution model, such as at least one parametric distribution
model, for transform coefficients of the set the magnitudes of
which are less than the one of the boundary coefficient values.
The maximum likelihood estimation at event 2610 is illus-
trated with double-arrows because of the co-dependence
between the variables or parameters between the at least one
boundary coefficient value and the distribution models.

At event 2608, the method 2600 includes performing a
device operation on at least one of the subsets of transform
coefficients. In some example embodiments, the device
operation on the at least one of the subsets of transform
coefficients includes at least one of: encoding, storing on a
memory, transmitting to a second device, transmitting to a
network, outputting to an output device, decoding, displaying
a decoded version on a display screen, determining image
similarity between different images by comparison of the at
least one of the subsets of discrete transform coefficients, and
generating an identifier which associates the composite dis-
tribution model with the at least one of the subsets of discrete
transform coefficients.

Still referring to event 2608, the device operation on the
subset of coefficients can be used to filter an image using the
boundary coefficient value, for example maintaining at least
one subset bounded by the boundary coefficient value and
setting the remaining subsets of coefficient values to a zero
value. The remaining subset(s) can then be decoded and dis-
played on a display, for example. This has been illustrated in
detail with respect to FIGS. 9-11, for example.

7 Conclusions to TCM

Motivated by the flat tail phenomenon in DCT coefficients
and its perceptual importance, this disclosure has developed a
model dubbed transparent composite model (TCM) for mod-
eling DCT coefficients, which separates the tail portion of
DCT coefficients from the main portion of DCT coefficients
and uses a different distribution to model each portion: a
uniform distribution for the tail portion and a parametric
distribution such as truncated Laplacian, generalized gauss-
ian (GQG), and geometric distributions for the mail portion.
Efficient online algorithms with global convergence have
been developed to compute the ML estimates of the param-
eters in the TCM. It has been shown that among the Laplacian
model, GG model, GGTCM, and LPTCM, the GGTCM
offers the best modeling accuracy for real-valued DCT coet-
ficients at the cost of large extra complexity. On the other
hand, for discrete DCT coeflicients, tests over a wide variety
of images based on both divergence distance and %> test have
shown that the GMTCM outperforms both the Laplacian and
GG models in term of modeling accuracy in majority cases
while having simplicity and practicality similar to those of the
Laplacian model, thus making the GMTCM a desirable
choice for modeling discrete DCT coefficients in real-world
applications. In addition, ithas been demonstrated that the tail
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portion identified by the GMTCM gives rise to an image
called an outlier image, which, on one hand, achieves dra-
matic dimension reduction in comparison with the original
image, and on the other hand preserves perceptually impor-
tant unique global features of the original image. It has been >
further suggested that the applications of the TCM, in par-
ticular the LPTCM and GMTCM, include image and video
coding, quantization design, entropy coding design, and
image understanding and management (image similarity test-
ing, scenic image blind detection, face detection, etc.).

Appendix A
In this appendix, we prove Lemma 1.

First note that g(t) can be rewritten as

—_
w

1 K
LO0=K-Id s 1w
20
Its derivative is equal to
—e! KZEJQ
gn= —( A —— 25
- _K1\2
___ e ! [(1 -e™) _ Kze’(’(’”’}
(l—e k2| (1-e)?
o K-1 2
_ et | — g2e—K-r 30
T—e k|| £
et K-1 K-1
e Kef(Kfl)r/Z 3 e—ir + Kef(Kfl)r/Z
1 - e*’(’)z ; '
i=! i=0
35
It is not hard to verify that
[[K71 > 2 *
e*ir _ Kef(Kfl)r/Z} —it/2 e** >0
Yl
whenever K>1, where
45

K; = ﬂoor(g) -1

50
This, together with (41), implies that g'(t)<0 for any t>0

whenever K>1. Hence g(t) is strictly decreasing over t€
(0, ).

Next we have
55

_ K-1
e
e*”
ot 1 —e XKt Z

lim g(z) = lim
-0t 1> e

_K. e—(l(—l)r}

K-1
Z 41 K- ef(l( e

1—e kKt

60

65

30

Finally, the strict concavity of

as a function of t to follows from (41) and the fact that

P K, Z)

G =M Klg (0.

This completes the proof of Lemma 1.

APPENDIX B

In this appendix, we prove Theorem 3.

First, arguments similar to those in the proof of Theorem 2
can be used to show that A" is upper bounded by A, strictly
increases, and converges to A as i—>co. Therefore what
remains is to show that the convergence is exponentially fast.
To this end, let

eIt

A
M2 .

In view of (38), it follows that

(+1)y _
AATT = C+ ka1
=C+ KA /K)
and hence
QDY —pAy = KRAD J K) - KRV 1K)
KhAD /Ky = KAV /1K) o P

= ARG [AAY) = H@A)]
< o[hAD) - hAT)]

where

_ KhA/K) = Kh(v[K) ©
5_514{ W — ) A, v e [A ,/\,d,/\#v}.

In view of Lemma 1 and its proof (particularly (41)), it is
not hard to verify that 0<d<1. Therefore, as i—>o, h(A®)
converges to h(A) exponentially fast. Since the derivative of
h(\) is positive over AE[A A ] and bounded away from 0, it
follows that A% also converges to A exponentially fast. This
competes the proof of Theorem 3.

8 Introduction to MTCM

The above example embodiments have shown that (1) for
real-valued continuous AC coefficients, LPTCM offers a
superior trade-off between modeling accuracy and complex-
ity; and (2) for discrete (integer or quantized) DCT coeffi-
cients, which are mostly seen in real-world applications of
DCT, GMTCM models AC coefficients more accurately than
the Laplacian model and GG model in majority cases while
having simplicity and practicality similar to those of the
Laplacian model. When limited to AC coefficients at low
frequencies, however, GMTCM only ties up with the GG
model in terms of modeling accuracy. Since DCT coefficients
atlow frequencies are generally more important than those at
high frequencies to human perception, it would be advanta-
geous to further improve the modeling accuracy of LPTCM
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and GMTCM for low frequency DCT coefficients without
sacrificing modeling simplicity and practicality.

In accordance with at least some example embodiments,
we extend the concept of TCM by further separating the main
portion of DCT coefficients into multiple sub-portions and
modeling each sub-portion by a different parametric distribu-
tion (such as truncated Laplacian, GG, and geometric distri-
butions). The resulting model is dubbed a multiple segment
TCM (MTCM). In the case of general MTCMs based on
truncated Laplacian and geometric distributions (referred to
as MLTCM and MGTCM, respectively), a greedy algorithm
is developed for determining a desired number of segments
and for estimating the corresponding separation boundaries
and other MTCM parameters. For bi-segment TCMs, an effi-
cient online algorithm is further presented for computing the
maximum likelihood (ML) estimate of their parameters.
Experiments based on Kullback-Leibler (KL) divergence and
> test show that (1) for real-valued continuous AC coeffi-
cients, the bi-segment TCM based on truncated Laplacian
(BLTCM) models AC coefficients more accurately than
LPTCM and the GG model while having simplicity and prac-
ticality similar to those of LPTCM and pure Laplacian; and
(2) for discrete DCT coefficients, the bi-segment TCM based
on truncated geometric distributions (BGTCM) significantly
outperforms GMTCM and the GG model in terms of model-
ing accuracy, while having simplicity and practicality similar
to those of GMTCM. Also shown is that the MGTCM derived
by the greedy algorithm further improves the modeling accu-
racy over BGTCM at the cost of more parameters and slight
increase in complexity. Therefore, BLTCM/MLTCM and
BGTCM/MGTCM represent the state of the art in terms of
modeling accuracy for continuous and discrete DCT coeffi-
cients (or similar type of data), respectively, which, together
with their simplicity and practicality, makes them a desirable
choice for modeling DCT coefficients (or similar type of data)
in real-world image/video applications.

9 Review of TCM

In this section, we briefly review the concept of TCM for
continuous DCT coefficients, as described in detail above.

Let f(yl0) be a probability density function (pdf) with
parameter 6E0, where 6 could be a vector, and O is the
parameter space. Let F(yl0) be the corresponding cumulative
distribution function (cdt), i.e.

Fy0)& [ >Aul0)du.

Equation numbers will re-start from (1) for convenience of
reference.

Assume that f(yl0) is symmetric in y with respect to the
origin, and F(yl0) is concave as a function of'y in the region
y=0. It is easy to verify that Laplacian, Gaussian, and GG
distributions all satisfy this assumption. The continuous TCM
based on F(yl0) is defined as

42)

PO e, b, 0) =

b .
Wﬂﬂ@ if |yl < ye

1-b .

Z(a——yc) if ye<lyl=<a

b 1-0 .
maX{Wﬂyc |6), Z(a——yc)} if |yl = ye
0 otherwise

where O<b=1, 0<d<y_<a, and a represents the largest magni-
tude a sample y can take. Here both a and d are assumed to be
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known. It is not hard to see that given (y_, b, 8), as a function
of'y, p(yly_, b, 0) is indeed a pdf, and also symmetric with
respect to the origin.

According to the TCM defined in (42), a sample y is gen-
erated according to the truncated distribution

1
72F(y6|0)_1f(yl9)

with probability b, and according to the uniform distribution

_r
2(a~-yc)

(also called the outlier distribution) with probability 1-b. The
composite model is transparent since given parameters (y,, b,
0), there is no ambiguity regarding which distribution a
sample y=+y_ comes from. The ML estimates of the separa-
tion boundary y,. and parameter (6, b) can be computed effi-
ciently through the online algorithm with global convergence
developed in Sections 3 and 4 above, especially when f(y|74)
is Laplacian. As described in Sections 3 to 6 above, the value
of'b is on average around 0.99. As such, the portions modeled
by the truncated distribution

1
Wﬂﬂ@

and the outlier distribution are referred to as the main and tail
portions, respectively.

10 Continuous Multiple Segment Transparent Composite
Model

To improve the modeling accuracy of TCM, especially for
AC coefficients at low frequencies, we now further separate
the main portion of DCT coefficients into multiple sub-por-
tions and model each sub-portion independently by a differ-
ent parametric distribution, yielding a model we call a mul-
tiple segment transparent composite model. Assuming DCT
coefficients are continuous (i.e. can take any real value), in
this section we describe and analyze continuous MTCMs.

10.1 Description of General Continuous MTCMs

Separate the main portion further into 1 sub-portions. The
MTCM based on F(yl0) with 1+1 segments is defined as

P17, BB = “3)
by .
mﬂﬂel) if |yl < ye
by .
3O, 160~ Fo, 1601 O 1) i0ye <bi<ye
by .
MG 100~ Flve, 107 1 1 ey Bl
ot FO18u, iy, <bl=a
20F @l 0w1) - Flye, 1001 ‘
0 otherwise
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-continued
where J, = (Yey» Yopos oov » Ye) with
0<d =y <yo <. <Yo; <Y, =a
b =(by, by, ... ,byy) with

biz0and by +br+...+ by =1,

O=(0,0, ... ,041),

and
¥13..5.9) { b fo1e

, b, 8) = max: ),
P 2AF(ye 160 Flg, 16017

bit1
6;
MF0e, 100 - Fivg 16,017 “)}

whenever y=zly_ . 1,2, dwithy,

Note that in the MTCM defined in (43), the tail portion is
also modeled by a truncated distribution based on f(y|0). This
deviation from the TCM defined in (42) is motivated by the
observation that given y_, the uniform distribution over
(ycl’ o -¥,,) 1s actually the limiting distribution of

o
@)~ Flog 18m01 1)

as some parameter in 0,,;, goes to co for most parametric
distributions f(y10) such as the Laplacian, Gaussian, and GG
distributions. Therefore, leaving 8,, ; to be determined by ML
estimation would improve modeling accuracy in general.

Depending on f(y|0), estimating the MTCM parameters y_,
b, B in a general case for arbitrary 1 may be difficult. In the
following, we shall instead focus on special cases where 1=1
orf(yl0)is Laplacian, and develop accordingly effective ways
for estimating y_, b, 8.

10.2 ML Estimates of Bi-Segment TCM Parameters

Inthe case of bi-segment TCM, we have 1=1 and the param-
eters to be estimated are y., by, 8,, and 8,. To develop an
attractive algorithm for computing the ML estimates of y,.,
by, 0,, and 0,, we further assume that f(y|0) is differentiable
for y=0 and

F'(y10)[1-F(316)]+[F (#16)]220 (44)

for any y=0. It is not hard to verify that the Laplacian, Gaus-
sian, and GG distributions with the shape parameter =1 all
satisfy (44).

LetY,"=(Y,,Y,, ...,Y,) be asequence of DCT coeffi-
cients in an image or in a large coding unit (such as a block, a
slice or a frame in video coding) at a particular frequency or
across frequencies of interest. Assume that Y,” behaves
according to the MTCM defined in (43) with I=1 and with
Y02 max{lY,:1<izsn}<a and Y, . =d. (When 'Y, <d, the
ML estimatesofy,  , areequaltodand]l, respectively.) We
next investigate how to compute the ML estimates of y,. , by,
0,, and 0, under the condition (44).

GivenY,” with d=<Y,, <a, define
AR RN AL
Noyep) ® {iive <1%i1}

Ny 2 {iz 1% 1=y}
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Then the log-likelihood function g(y., b,, 81Y,”) accord-
ing to (43) with 1=1 is equal to

_ 45
S0k b B = S laf(16)+ @

ieN1 (e, )
DT I 1 02) + Ny (e linby + INa(ye in(l = by) +
ieNz(yCI)

bif(ye, 161 R (L=b)f(ye, 162) }_
2F(ye, 100 =17 "2[F(al62) = F(ye, 1 62)]

N (e JIN[2F (v, | 61) = 11 = IN2(ye JIn2[F(a | 62) = Flye, |62)]

IN3(ve, >|max{1n

where S| denotes the cardinality of a finite set S. In view of
(44) and the assumption that F(yl0) is concave, one can verify
that given IN, (y, )l and IN,(y,. )I,

=N, ()l In [2F (3,18 ))-1/- 1N, (v, )l In 2/F(a16,)-F
71021
as a function of y.  convex. Sort IY,l, [Y,l, . .. IY,| in

ascending order into W, =W,= ... <W,.Note that W,=Y,, ..
Let m2 min{i:W zd}. Then using an argument similar to the
proof of Theorem 1 in subsection 3.2 (above), one can show
that

max{g(ye,, b1, 0| Y d =y <a,0=<b =<1,8)= 46)

max

max &(ey» b1, O] 17).
0.8 Yoy S W Wy s W) 1

Therefore, the ML estimate of'y,. is equal to oneofd, W,
m+ls 0 W
For any ) - w

W

o

WL et

m+1

(b1(3,)B(y.1))# arg maxy, 5g(y.,,b,,0/Y,").

Giveny,, b,(y.)and 6,(y, ), i=1,2, can be computed in a
manner similar to Algorithm 1 (FIG. 12). In particular, when
f{y!6) is Laplacian, 6,(y.,), i=1, 2, can be computed by the
exponentially fast convergent Algorithm 2 (FIG. 13). Then
the ML estimates of y,. , b;, 6, and 6, are determined as

Yoy SRR, w80y 010, Be ) YD) 47

bi=b (yZl)

o =6y ) i=12

Summarizing the above derivations into Algorithm 5 (FIG.
31) for computing (y,. *, b, *, B8%), we have proved the follow-
ing result.

Theorem 4: The vector (y,, *, b,*, B8*) computed by Algo-
rithm 5 is indeed the ML estimate of (y,., by, 0) in the bi-
segment TCM specified in (43) with 1=1.

Remark 5: When f(y|0) is Laplacian, the distribution of the
tail in the bi-segment TCM specified in (43) with 1=1
approaches the uniform distribution over (y,. , a]JU[-a, -y, )
as 0, goes to . Therefore, the BLTCM derived by Algorithm
5 in conjunction with Algorithm 2 (FIG. 13) is better than the
LPTCM derived by Algorithm 1 (FIG. 12) in conjunction
with Algorithm 2 (FIG. 13) in term of modeling accuracy.
This is further confirmed by experiments in Section 12,
below.
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10.3 Estimates of MLTCM Parameters
Suppose now that f (y|0) is Laplacian. Plugging the Lapla-
cian density function

Lt

into (43), we get the MLTCM with 141 segments given by

py17..5.0)2 “8)
by il
e X i
e iEbl<yq
1¥-y¢
by s
—_———e if ye, <yl < ye
| Ve v 2 22 o SDI< e
I¥l=ye,
biyy L.
_— ¢ M1l ify, <|yl=a
1- e’(yCHl ’yCl)/’\Hl 22041 !
0 otherwise.

where Y =(yeps Yoy - - » ¥e) With

< < e €] €] =
0<peyYer< Yo Ve, =4

b=(b,, b,, . . . b,,,) with b,=0 and b, +b,+ . . . +bsb,, =1,
F=(hps Ry - .. Ayyy) With 2,20, i=1, 2, . . ., 1+1, and

P17, 0.2 =
b;

maxy ——m @&
{1 _ e leiye A

)/ai

(e ey

b1+1 1 }
’ 1_e’(y0;+1’y6;)/’\i+1 2241

whenever lyl=y,., =1, 2,...,1, withy, 0

In practice, neither 1 nor (v, b, X) is known. Given'Y,” with
0<K,,..<a, we next present a greedy algorithm for determin-
ing a desired value of/and for estimating the corresponding
parameters y_, b, A. To this end, let us first consider a generic
truncated Laplacian distribution

{ : 7 21/1 T ] < e @
py =4 1-ee

0 otherwise.

Let VI=(V,,V,, ..., V,) be a sequence of samples drawn
independently according to the generic truncated Laplacian
distribution given in (49). From the proof of Theorem 2, the
ML estimate A(V?) of A from V7 is the unique solution to

Yo/t (50)

Ye€

A= 1 — vk

-C=0

where

1T
C:T;IV;I

and by convention, the solution to (50) is equal to 0 if C=0,
and +oo0 if Czy_/2. From the central limit theorem and strong
law of large numbers, we have
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e Vet
_Z Vil - [ e yc/x}

- A0, 1) in distribution

e
and
1z 1T
Z 2 Wil = 23" V| — o with probability 1
i=1 =1
where
1 Ye .1 yeyc//\ 2
=Evif - Pe gy a2
o? = Vi - [EIVi] —1_8,%[0 Ve dy [A ——x|

Therefore, we have

Ve e Yo/t

1 — e ¥/t

- A (0, 1) in distributionas T — co.

In particular,

Yoo et (62)
TZ Vil - [ — e yc//\} @
. N
711ﬁrg)Pr =0 (2) =l-«
O F I
— V2= | = g
T‘;ll il T;; | ‘I
T-1
00
for any 0 < @ < 1, where Q(x) 2 f —e’”z/zdu.
Let A*(V7) be the unique solution to
- yoe et _ 52)
1— ey
T 2
Lz o ZIVI2 [ _ZIIV;I}
— v -1 Z ; =0
T;| i+07(3) T
and A~(V7) be the unique solution to
—Yeld (533
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as a function of A is strictly increasing over A>0, it follows
from (51), (52), and (53) that (51) is equivalent to

Thm PrA (V=A< At (VT =1-a. (54)

In other words, [A~(VT),A*(VT)] is a confidence interval for
estimating A with asymptotic confidence level 1-c..

The above derivation provides a theoretic basis for us to
develop a greedy method for determining 1 and for estimating
V., b,and A from Y,"=(Y,, Y,, . . ., Y,). Select a desired
confidence level 1-a such as the one with =0.05 or 0.02. In
view of (54), also select a threshold T*>0 such that for any
T=T%*,

Pr{)-(VH=sh=nr (VD)

can be well approximated by 1-o. As before, sort 1Y,1,
IY,l,...,1Y,linascending orderinto W,=W,=...<W,.Then
let

and write (W,, W,,,, ..., W), for any 1<isj=n, as W/, and
(W, Wy, ..., W) 51mp1y as W. Pick a T such that T>T*
W,>0, and WT+1>W Let

ATR [{i:W=Wy, ).

Compute A*(W7T) and A~ (W7) as in (52) and (53) respec-
tively with y =W, by replacing V, by W,. Compute A(W27)
asin (50) withy =W ., , ~by replacing V, by W,. In view of the
derivations from (50) to (54), W7 and W, 177 would be
deemed to come from the same Laplacian model if A(WZ+A7)
EMN-(WHAH(WT)], and from different models otherwise.
Using this criterion, one can then grow each segment recur-
sively by padding each sample immediately adjacent to that
segment into that segment until that sample and that segment
are deemed to come from different models. This is the under-
lying idea behind the greedy method described as Algorithm
6 (F1G. 32) for estimating y,. , b,, A, fromY,” or equivalently
W. Theresulting estimates oy, , b, , A, aredenoted by Y (W),
B(W), and A(W), respectively, for convenience.

Denote the value of T at the end of Algorithm 6 in response
to W as T(W). After the first segment with length T,=T(W) is
identified and the values of'y,., b, and A, are determined as
Ve, = YAW), b;=B(W), and A,=A(W), Algorithm 6 can be
applied again to the translated remaining samples

(WTM—.VCP Wi Yep -+ s W,

with y,=y,, to determine the length T, of the second segment
and the values of y,, ,, and A,:

T2:T(WT1+l_ycll Wrio=Yep -+ +» Wn_ycl)
Yor Vet Y Wi =Yep Wrpo Ve - -+ Wo=ve)
b2:B(WT1+l_ycll Wrisa=Yep -+ +» Wn_ycl)
ho=A( Wrier=YepWrpa=Yep - -+ Wn_ycl)'

This procedure can be repeated again and again until there
are no more remaining samples, yielding a greedy method
described as Algorithm 7 (FIG. 33) for determining 1 and for
estimating y_, b, and A fromY,"=(Y,,Y>, . ..,Y,), where the
vector U denotes the dynamic translated remaining samples,
and t denotes the cumulative length of all segments identified
so far.

Let J denote the value of j at the end of Algorithm 7 in
response toY,”. Theny,  isequaltoaorY,,,,. Inthe case of
Ve, = the Value of 1in the MLTCM given by (48) s equal to
122. Otherwise, 1is equal to J-1, and the last segment is from
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Y .0 t0 @ with b,, =0 and A, , defined arbitrary. Since solu-
tions to (50), (52), and (53) can be computed effectively by
the exponentially fast convergent Algorithm 2 (FIG. 13),
Algorithm 7 is very efficient and runs essentially in linear
time once the sorting of Y,” into W is done. Experiments in
Section 12 show that the resulting MLTCM has superior
modeling accuracy.

11 Discrete Multiple Segment Transparent Composite
Model

Though DCT in theory provides a mapping from a real-
valued space to another real-valued space and generates con-
tinuous DCT coefficients, in practice (particularly in lossy
image and video coding), DCT is often designed and imple-
mented as a mapping from an integer-valued space (e.g.,
8-bits pixels) to another integer-valued space and gives rise to
integer DCT coefficients (e.g., 12-bits DCT coefficients in
H.264). In addition, since most images and video are stored in
a compressed format such as JPEG, H.264, etc., for applica-
tions (e.g., image enhancement, image retrieval, image anno-
tation, etc.) based on compressed images and video, DCT
coefficients are available only in their quantized values.
Therefore, it is desirable to further improve the modeling
accuracy of GMTCM for discrete (integer or quantized) DCT
coefficients in practice by considering the discrete counter-
part of continuous MTCMs, i.e., discrete MTCMs.

The particular discrete MTCM we shall consider and ana-
lyze in this section is the one where each segment is modeled
by a truncated geometric distribution. The resulting discrete
MTCM is broadly referred to as MGTCM in general and as
BGTCM in the special case of two segments. To provide a
unified treatment for both integer and quantized DCT coeffi-
cients, we introduce a quantization factor of step size. Then
both integer and quantized DCT coefficients can be regarded
as integers multiplied by a properly chosen step size.

11.1 MGTCM

Consider uniform quantization with dead zone, which is
widely used in image and video coding (see, for example,
H.264 and HEVC). Mathematically, the output of the uniform
quantizer with dead zone A and step size q in response to an
input X is given by

d(IIXI—(A—q/Z)I)

Q(X) = g Xsign(X) xroun

where q/2=A<q. Assume that the input X is distributed
according to the Laplacian distribution. Then the quantized
index

sign(X) Xround(w)

is distributed as follows

(63

_4 49 9
e /\[l—e /\]e A=D a2,

With the help of q, discrete (integer or quantized) DCT
coefficients then take values of integers multiplied by q.
(Hereafter, these integers will be referred to as DCT indices.)
Note that p, in (55) is essentially a geometric distribution.
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Using a geometric distribution to model each segment, we
then get the MGTCM with 1+1 segments given by

bo ifi=0 (56)
=
by -Za-y 1-e ™
et _—¢ it 0 < il <K,
1-enM
,;\l
by — 9 (lil-K;— l-e 22
| RemR T T ki <lick,
pi(K, A, b)=1 2 |- i3tk
,XL
b 9 (i-K,— 1- 1+1
2l ma R T8 T ek <li<a
- N
0 otherwise
where K = (K|, ... ,K))
with
Ko=0<K <Ky<..<K/ <Kj=a
A=(hp, o A Mgy ) WithA=<0,5=(by, by, ... by, ;) with b=0 and
bo+b,+ . . . +b,,;=1, and a is the largest index in a given

sequence of DCT indices. Here a is assumed known, and K, A,
and b are model parameters.

11.2 ML Estimates of MGTCM Parameters

Let u"=u,, u,, . . ., u, be a sequence of DCT indices.
Assume that v” behaves according to the MGTCM defined by
(56) withu,,, . & max{lu,|: 1<i=n}=a. When the number 1+1 of
segments is given, the parameters K, &, and b can be estimated
via ML estimation from u”.

Let Ny={j:u,=0}. For any 1sisl+1, let

Ni(K) ={j: Ki_ <luj| < K}
and define

_q
—ex

LR, ) & N (Blln -4 (- K- 1.

q
ST
L = )

Given 1, the log-likelihood function of u” according to (56)
is then equal to

1 1

o B (57)
Woltnbo + 3 IN:(K)lln + 3 Li(K. A;).
i=1 i=1

A

G(K, X, b)

Given K, further define
(ME),B(E))2 arg maxs 5 GE D).
Then it follows from (57) that

[Nol

n

by(K) =
and for any 1=i<l+1,

V(K (58)
bRy = L)'

and

4(K) = argmaxosise Li(K, A).
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Finally, the ML estimate of K is equal to

K*=arg maxzG(RMK),D(EK)). (59)

Accordingly, the ML estimates of A and b are respectively
equal to
A =h(R*) and b;*=b,(K*)

for any 1=i<l+1 with

_ ol

b
Given K, A,(K) in (58) can be computed effectively by the

exponentially fast convergent Algorithm 3 (FIG. 14); in par-
ticular, as shown therein, A(K) is the unique solution to

1 K- Ky
eI _1  elKiKi1lax _ |

e (60)

where

1
|- K -1
|N;(F)|.Z (bl = Ko =D
JjeN;(K)

and by convention, the solution to (60) is equal to 0 if C<0,
and +o if Cz[K,-K, ;-1]/2. Therefore, the complexity of
computing K*, A*, and b* lies mainly in comparing all pos-
sible combinations of K to K*, the complexity of which is
O(a"). In the case of 1=1, the complexity is essentially the
same as that of computing the ML estimates of GMTCM
parameters. In addition, since the distribution of the tail in the
MGTCM defined by (56) converges to the uniform distribu-
tion over (K, a]U[-a, -K) as A, ; goes to oo, BGTCM offers
better modeling accuracy than does GMTCM, which is fur-
ther confirmed by experiments in Section 12.

11.3 Greedy Estimation of 1 and Other MGTCM Param-
eters

When the number 1+1 of segments in the MGTCM defined
by (56) is unknown, it has to be estimated as well along with
other parameters K, A, and b. In this subsection, we present a
greedy algorithm for determining a desired value of 1 and
estimating the corresponding parameters K, A, and b. The
algorithm is similar to Algorithms 6 and 7 in principle. As
such, we shall point out only places where modifications are
needed.

Consider a generic truncated geometric distribution

L —4q-n 1-et i e
A Eex 7 ift0<|]<K
pilK, A) = 1—e ¥
0 otherwise.

Let VI=(V,,V,, ..., V,) be a sequence of samples drawn
independently according to the generic truncated geometric
distribution given by (61). As shown in Algorithm 3 (FIG. 14),
the ML estimate A(V7) of A from V7 is the unique solution to
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_ K ©2)
et —1  eKad — 1
where
1
c= ?;qw—l)

and by convention, the solution to (62) is equal to 0 if C=<0,
and +o0 if Cz(K-1)/2. In parallel with (52) and (53), let
AV and A~ (VT) be respectively the unique solution to

LT T P (63)
— 7 A i
1 % " T;;ll il [T;;ll ll} Y
s Rl LR MM T—1 =
and
17 r T (64)
— 7 A i
1 % — T;;ll il [T;;ll ll} .
P Rl L (5) T-1 -

Then (54) remains valid. Note that b,=INy|/n. Let i=n—IN,|.
Sort lu,l, i#EN,, in  ascending order  into
W, =sW,= ... =W,

7, and let

Then a greedy algorithm similar to Algorithm 6 can be used
to estimate K, b,,and A, from W, which is described in detail
in Algorithm 8 (FIG. 34). The resulting estimates of K, b,,
and A, from W are denoted by K(W), B(W), and A(W),
respectively, for convenience.

Denote the value of T at the end of Algorithm 8 in response
to W as T(W). Applying repeatedly Algorithm 8 to translated
remaining samples until there are no more remaining
samples, we get a greedy method described as Algorithm 9
(FIG. 35) for determining 1 and for estimating K, b, and A
from v”, where the vector U denotes the dynamic translated
remaining samples, and t denotes the cumulative length of all
segments identified so far.

In practical implementation of Algorithms 8 and 9, the step
of sorting u, could be avoided. Instead, one can equivalently
collect the data histogram {h, j=0,1, . . ., a} from v”. Since
solutions to (62) to (64) can be effectively computed by the
exponentially fast convergent Algorithm 3 (FIG. 14), the
major complexity of Algorithms 8 and 9 lies essentially in
collecting the data histogram {h,, j=0, 1, ..., a}. Experiments
in Section 12 show that the MGTCM derived by Algorithms
8 and 9 has superior modeling accuracy, where the number of
segments is on average around 7.

12 Experimental Results on Tests of Modeling Accuracy

This section presents experimental results obtained from
applying BLTCM to model continuous DCT coefficients with
comparison to GG and LPTCM in non-multiple TCM as
described above, and applying MGTCM and BGTCM to
model DCT indices with comparison to GG, Laplacian and
GMTCM in non-multiple TCM as described above. As DCT
coefficients in real world application are often in their quan-
tized values or take integer values (e.g., an integer approxi-
mation of DCT is used in H264 and HEVC), this section is
mostly focused on the modeling performance of the discrete
models MGTCM and BGTCM.
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12.1 Tests of Modeling Accuracy

Two criteria are applied again in this section to test the
modeling accuracy of the developed models and to compare
them with other models in the literature. Again, the first one is
the 2, defined as follows,

65
2 I (i —n-gq) ©

n-gi
=1

where 1is the number of intervals into which the sample space
is partitioned, n is the total number of samples, n, denotes the
number of samples falling into the ith interval, and g, is the
estimated probability by the underlying theoretical model
that a sample falls into the interval i. Another criterion is the
Kullback-Leibler (KL) divergence distance, which is defined
as

i (66)
Pi
d= § Pilnza
i=1

where 1 is the alphabet size of a discrete source, p, represents
probabilities observed from the data, and g, stands for prob-
abilities obtained from a given model. Note that p,=0 is dealt
with by defining 0 1n 0=0.

When a comparison is conducted, a factor w, is calculated
to be the percentage of DCT frequencies among all tested AC
positions that are in favor of one model over another model in
terms of having a smaller KL divergence from the data dis-
tribution. Another factor w,2 is defined in a similar way,
except that the comparison is carried out based on the % test
results for individual frequencies.

To illustrate the improvement of BGTCM over GMTCM
for modeling low frequency DCT coefficients, experimental
results are collected for low frequency DCT coefficients.
Specifically, a zig-zag scan is performed and only the first 15
ACs along the scanning order are used for testing the model-
ing accuracy.

Three sets of testing images are deliberately selected to
cover a variety of image content, as what have been used in
Section 5 described above. The first set, as shown in FIG. 6,
includes 9 standard 512x512 images with faces, animals,
buildings, landscapes, etc. The second set, as shown in FIG. 7,
has five high definition (1920x1080) frames from the class-B
sequences used for HEVC standardization tests [3]. The third
set, as shown in FIG. 8, is also taken from HEVC test
sequences, as the Class F sequences for screen content, i.e.,
frames that are captured from computer screens.

12.2 Overall Comparisons for Each Image

For modeling continuous DCT coefficients, experiments
have been conducted to do overall comparison among
BLTCM, LPTCM, and GG model. For modeling DCT indi-
ces, comparative experiments have been conducted for two
pairs of models. The first is to compare BGTCM and the GG
model. The second comparison is between BGTCM and
MGTCM. For the overall comparison between other pairs of
models, the result can be seen without experimental data. For
example, BGTCM always outperforms GMTCM and
GMTCM always has a better modeling accuracy than the
Laplacian model.

Table 10 (FIG. 36) shows the percentage w.2 (w,, respec-
tively) of frequencies among the 15 low AC positions that are
in favor of BLTCM over the GG model for each of 9 images
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in Set 1 in terms of the y* metric (KL divergence, respec-
tively). To illustrate the improvement of BLTCM over
LPTCM, Table 11 (FIG. 37) shows the percentage w. 2 (W,
respectively) of frequencies among the 15 low AC positions
that are in favor of LPTCM over the GG model for each of 9
images in Set 1 in terms of the x> metric (KL divergence,
respectively). From Tables 10 and 11, it is clear that BLTCM
significantly improves LPTCM and outperforms the GG
model in terms of modeling accuracy for modeling continu-
ous low frequency DCT coefficients.

Table 12 (FIG. 38) shows the percentage w2 (w,, respec-
tively) of frequencies among the 15 low AC positions that are
in favor of BGTCM over the GG model for each of images in
all test sets in terms of the %> metric (KL divergence, respec-
tively). Note that all images are coded by JPEG with QF=100
and the discrete/quantized DCT coefficients are read directly
from the JPEG file. From Table 12, it is clear that BGTCM
provides significantly better modeling accuracy overall than
the GG model for these low-frequency DCT coefficients. To
illustrate the improvement of BGTCM over GMTCM, Table
13 (FIG. 39) presents the overall comparative results between
GMTCM and the GG model, which shows a fairly tied per-
formance between GMTCM and the GG model for modeling
the low frequencies. In comparison of Table 12 with Table 13.
It is clear that BGTCM achieves its goal of improving the
accuracy for modeling low frequency DCT coefficients while
having its simplicity and practicality similar to those of
GMTCM.

Table 14 (FIG. 40) presents the percentage w. 2 (W ,, respec-
tively) of frequencies among the 15 low AC positions that are
in favor of the MGTCM derived from Algorithms 8 and 9 over
BGTCM for each of images in all test sets in terms of the %>
metric (KL, divergence, respectively). Note that since the
greedy algorithm was used, the modeling accuracy of the
resulting MGTCM is not always guaranteed to be superior
over that of BGTCM, although from the model establishment
point of view, BGTCM is considered as a special case of
MGTCM. Nevertheless, Table 14 shows that the greedy algo-
rithm for MGTCM works fairly well and the resulting
MGTCM generally provides better modeling accuracy than
BGTCM. This is also true for the comparison between the
MLTCM derived from Algorithms 2 and 3 and BLTCM, the
detail of which is hence omitted here.

12.3 Comparisons of Modeling Accuracy for Individual
Frequencies

While Tables 12-14 show comparative results for each
image over all frequencies, it is of some interests to see the
performance of all models for individual frequencies. Due to
the space limit, only results for four images have been chosen
to be shown in FIGS. 27-30. Yet, the selection of the four
images is carried out in a way to be in more favor of other
models rather than of the proposed models. Specifically, one
image is selected from each test set to have the worse perfor-
mance by the proposed BGTCM in Table 12, i.e., ‘boat’,
‘CS’, and ‘B5’. In addition, the ‘lenna’ image, whose statis-
tics has been well studied, is also selected.

ASFIGS. 27-30 also show the value of the %> scores and the
KL divergence, it helps to compare BGTCM with the GG
model for their overall performance. For example, for the
image of ‘boat’ and by the measurement of the % score,
BGTCM wins over the GG model for 9 frequencies and loses
for 6 frequencies. Yet, a close look at the left panel of FIG. 27
shows that among the 15 ACs, there are 8 frequencies for
which BGTCM has a dramatically lower > score, while for
the other 7 frequencies, including 6 in favor of the GG model
and 1 in favor of BGTCM, the % scores by BGTCM and the
GG model are very close to each other. As a result, though in
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Table 12 we can only report that BGTCM wins 60% over the
GG model for modeling the low frequencies of ‘boat’, FIG.
27 shows that BGTCM clearly outperforms the GG model for
modeling ‘boat’ overall. Similar results can be seen for ‘B5’
while examining the detailed comparison between BGTCM
and the GG model as shown in FIG. 30, which shows a clear
win by BGTCM over the GG model while Table 12 only
reports that BGTCM wins 67% over the GG model.

13 Conclusions to MTCM

Motivated by the need to improve modeling accuracy,
especially for low frequency DCT coefficients, while having
simplicity and practicality similar to those of the Laplacian
model, the second part of this disclosure has extended the
transparent composite model (TCM) concept disclosed in the
first part of the disclosure (i.e., sections 1 to 7) by further
separating DCT coeficients into multiple segments and mod-
eling each segment by a different parametric distribution such
as truncated Laplacian and geometric distributions, yielding a
model dubbed a multiple segment TCM (MTCM). In the case
of bi-segment TCMs, an efficient online algorithm has been
developed for computing the maximum likelihood (ML) esti-
mates of their parameters. In the case of general MTCMs
based on truncated Laplacian and geometric distributions
(referred to as MLTCM and MGTCM, respectively), a greedy
algorithm has been further presented for determining a
desired number of segments and for estimating other corre-
sponding MTCM parameters. It has been shown that (1) the
bi-segment TCM based on truncated Laplacian (BLTCM)
and MLTCM derived by the greedy algorithm offer the best
modeling accuracy for continuous DCT coefficients while
having simplicity and practicality similar to those of Lapla-
cian; and (2) the bi-segment TCM based on truncated geo-
metric distribution (BGTCM) and MGTCM derived by the
greedy algorithm offer the best modeling accuracy for dis-
crete DCT coefficients while having simplicity and practical-
ity similar to those of geometric distribution, thus making
them a desirable choice for modeling continuous and discrete
DCT coefficients (or other similar type of data) in real-world
applications, respectively.

In accordance with an example embodiment, there is pro-
vided a non-transitory computer-readable medium contain-
ing instructions executable by a processor for performing any
or all of the described methods.

In any or all of the described methods, the boxes or algo-
rithm lines may represent events, steps, functions, processes,
modules, state-based operations, etc. While some of the
above examples have been described as occurring in a par-
ticular order, it will be appreciated by persons skilled in the art
that some of the steps or processes may be performed in a
different order provided that the result of the changed order of
any given step will not prevent or impair the occurrence of
subsequent steps. Furthermore, some ofthe messages or steps
described above may be removed or combined in other
embodiments, and some of the messages or steps described
above may be separated into a number of sub-messages or
sub-steps in other embodiments. Even further, some or all of
the steps may be repeated, as necessary. Elements described
as methods or steps similarly apply to systems or subcompo-
nents, and vice-versa. Reference to such words as “sending”
or “receiving” could be interchanged depending on the per-
spective of the particular device.

While some example embodiments have been described, at
least in part, in terms of methods, a person of ordinary skill in
the art will understand that some example embodiments are
also directed to the various components for performing at
least some of the aspects and features of the described pro-
cesses, be it by way of hardware components, software or any
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combination of the two, or in any other manner. Moreover,
some example embodiments are also directed to a pre-re-
corded storage device or other similar computer-readable
medium including program instructions stored thereon for
performing the processes described herein. The computer-
readable medium includes any non-transient storage
medium, such as RAM, ROM, flash memory, compact discs,
USB sticks, DVDs, HD-DVDs, or any other such computer-
readable memory devices.

Although not specifically illustrated, it will be understood
that the devices described herein include one or more proces-
sors and associated memory. The memory may include one or
more application program, modules, or other programming
constructs containing computer-executable instructions that,
when executed by the one or more processors, implement the
methods or processes described herein.

The various embodiments presented above are merely
examples and are in no way meant to limit the scope of this
disclosure. Variations of the innovations described herein will
be apparent to persons of ordinary skill in the art, such varia-
tions being within the intended scope of the present disclo-
sure. In particular, features from one or more of the above-
described embodiments may be selected to create alternative
embodiments comprised of a sub-combination of features
which may not be explicitly described above. In addition,
features from one or more of the above-described embodi-
ments may be selected and combined to create alternative
embodiments comprised of a combination of features which
may not be explicitly described above. Features suitable for
such combinations and sub-combinations would be readily
apparent to persons skilled in the art upon review of the
present disclosure as a whole. The subject matter described
herein intends to cover and embrace all suitable changes in
technology.

All patent references and publications described or refer-
enced herein are hereby incorporated by reference in their
entirety into the Detailed Description of Example Embodi-
ments.
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The invention claimed is:

1. A method for modelling a set of transform coefficients,
the method being performed by a device and comprising:

determining at least one boundary coefficient value;

determining one or more parameters for a first distribution
model for transform coefficients of the set the magni-
tudes of which are greater than one of the boundary
coefficient values;

determining parameters for at least one further distribution

model for transform coefficients of the set the magni-
tudes of which are less than the one of the boundary
coefficient values; and

performing a device operation on at least part of a compos-

ite distribution model which is a composite of the first
distribution model and the at least one further distribu-
tion model having the respective determined param-
eters.

2. A method as claimed in claim 1, wherein said determin-
ing at least one boundary coefficient value includes determin-
ing the at least one boundary coefficient value which satisfies
a maximum likelihood estimation between the set of trans-
form coefficients and the composite distribution model.

3. A method as claimed in claim 1, wherein the at least one
further distribution model includes at least one parametric
distribution model.

4. A method as claimed in claim 3, wherein the at least one
parametric distribution model includes at least one of: a trun-
cated Laplacian distribution model, a truncated generalized
Gaussian model, and a truncated geometric distribution
model.

5. A method as claimed in claim 3, wherein determining
parameters for the at least one further parametric distribution
model includes determining a probability for the at least one
further parametric distribution model and the parameters of
the at least one further parametric distribution model itself.

6. A method as claimed in claim 1, wherein the first distri-
bution model includes a uniform distribution model.

7. A method as claimed in claim 1, wherein the first distri-
bution model includes a parametric distribution model.



US 9,245,354 B2

47

8. A method as claimed in claim 1, wherein the composite
distribution model is continuous and wherein the set of trans-
form coefficients is continuous.

9. A method as claimed in claim 1, wherein the composite
distribution model is discrete and wherein the set of transform
coefficients is discrete.

10. A method as claimed in claim 1, wherein a candidate for
each ofthe determined at least one boundary coefficient value
is selected from the set of transform coefficients.

11. A method as claimed in claim 1, wherein the device
operation includes at least one of: storing on a memory,
transmitting to a second device, transmitting to a network,
outputting to an output device, displaying on a display screen,
determining image similarity between different images by
comparing at least part of the composite distribution model,
determining a goodness-of-fit between the composite distri-
bution model and the set of transform coefficients, and gen-
erating an identifier which associates the composite distribu-
tion model with the set of discrete transform coefficients.

12. A method as claimed in claim 1, wherein the device
operation includes at least one of: quantizing at least some of
the set of transform coefficients based on the at least part of a
composite distribution model; and performing lossless or
lossy encoding on at least some of the set of transform coef-
ficients based on the at least part of a composite distribution
model.

13. A method as claimed in claim 1, wherein the device
operation includes performing a device function on at least
one of the subsets of transform coefficients which are each
bounded by the at least one boundary coefficient value.

14. A method as claimed in claim 1, wherein said at least
one boundary coefficient value includes at least two boundary
coefficient values, and wherein the at least one further distri-
bution model includes at least two further distribution mod-
els.

15. A method as claimed in claim 1, wherein the set of
transform coefficients includes: discrete cosine transform
coefficients, Laplace transform coefficients, Fourier trans-
form coefficients, wavelet transform coefficients, or predic-
tion residuals arising from prediction.

16. A method as claimed in claim 1, wherein the set of
transform coefficients is stored in a memory of the device, or
stored on a second device, or generated from a source media
data.

17. A method as claimed in claim 1, wherein the at least one
further distribution model is according to a truncated prob-
ability density function

b
— (8
2F(ycl0)—1f(y| Do 191 < s

wherein the first distribution is according to a uniform distri-
bution function

1-

0 [yl >
@y M e

wherein y_ is one of the boundary coefficient values, f(yl0) is
a probability density function with parameters 00, where 0
is avector, and © is a parameter space, F(y|0)is a correspond-
ing cumulative density function to f(yl0), b is a probability
parameter, and a represents the largest magnitude a sample y
can take.
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18. A method as claimed in claim 1, wherein the at least one
further distribution model is according to a truncated Lapla-
cian probability density function

b 1
[pp— ﬁe Il L Yl < e,

wherein the first distribution is according to a uniform distri-
bution function

1-

b
Ve <Dl=a,
2(a~-yc)

wherein y,. is one of the boundary coefficient values, b is a
probability parameter, A is the parameter of the at least one
further distribution model, and a represents the largest mag-
nitude a sample y can take.

19. A method as claimed in claim 18, further comprising
determining A, as a maximum likelihood estimate of A in the
truncated Lap1a01an probability density function for the
sample set {Y,:iES} according to:

computing

lSlZm

ies

fori=1, computing

Lo Yelhiog
N=csZlf T
1 — e Yeldi-1

for i=1, 2, . . . until A,-A,_,<e, where €>0 is a prescribed
threshold, and A,=C; and

determining a ﬁnal A, as an approximation for A, .

20. A method as clalmed in claim 1, wherein the comp051te
model is according to a discrete dlstrlbutlon function:

po=bp
1 )
pi=bll-ps[t—e L] X0 /(e f8) it izxt 2 ek
1-b ‘ .
pi:Z(a—K) if K<l|ij<a

wherein 1=K=a, b is a probability parameter, q is a step
size, a is the largest index in a given sequence of discrete
transform indices, p,A and K are model parameters, and
K is one of the boundary coefficient values.

21. A method as claimed in claim 20, further comprising
determining A as a maximum likelihood estimate of A, for a
sequence of indices u"=u;, u,, . . ., and N, (K)={j:
0<lu,l=K}, according to:

computing

U,

1
:m Z (|’4j|—1);

JENL(K)
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initializing
o__ 9 .
A= 1+C’
In
c

for iz1, computing

C=co—%
i=e ekani—D_1
ho_ 14
A= ) 1+C;
n c
for i=1, 2, . . . until AY-AU"1)<E€, where €>0 is a pre-

scribed threshold; and
determining a final A*” as an approximation for A.

22. A method as claimed in claim 1, wherein the composite

model is according to a probability density function:

R
PO 13e b, )= mﬂfﬁﬂywl) i |yl < ye,
by .
AMF e, 100~ Flog 1o 10 A0 ye <l <o,
by .
MFOq 100 - Forg 10017 100 10 van <bl<yq
it FO180), if yo <Dl <a
2[F(al 1) = F(ye, | 0i1)] !
0 otherwise

wherein 1 is the number of further distribution models

included in the at least one further distribution model,
?c:(ycl, Yep - - - » Ye,) represent the at least one boundary
coefficient value, f(y|0) is a probability density function
with parameters 0E0, where 0 is a vector, and © is a
parameter space, F(yl0) is a corresponding cumulative
density function to f(yl0), b=(b,, b,, . . ., b,, ) is a
probability vector with b,, ; representing the probability
for the first distribution model and each b,, 1=ix<l, repre-
senting the probability for the ith further distribution
model, 6=(8,,6,,...,0,,,)with6,,  being the parameter
of the first distribution model and each 6,, 1=i<l, being
the parameter of the ith further distribution model, and a
represents the largest magnitude a sample y can take.

23. A method as claimed in claim 1, wherein the composite

model is according to a discrete distribution function:

bo ifi=0
=
by —-Li-1 1—-e M
Atz iF 0 <]l <K,
1-e ik
-Z
by —Lgik-ny  l-e ™2 .
e T~ K <il= ks
piK. 2, 0)=q 2 | — o iRk
-
b — 2 qgi-k-1 l—e M+l .
L m I 28 i ki<li<a
L= T
0 otherwise
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where K=(K,, . . . , K)) with K;=0<K;<K,< . . .
<K<K, ,=a, A=A, . . ., Ay A, with A20, b=(b,,
by, ..., b, ) withb,=0and by+b,+ ... +b,, =1, wherein
b is a probability vector parameter, 1 is the number of
further distribution models included in the at least one
further distribution model, q is a step size, a is the largest
index in a given sequence of discrete transform indices,
K, &, and b are model parameters, and K represents the
boundary coefficient values.

24. A method as claimed in claim 23, further comprising
estimating K,, b, and A, using a greedy algorithm by:

initializing K ;

recursively growing the segment bounded by K, by pad-

ding each sample immediately adjacent to that segment
into that segment until that sample and that segment are
deemed to come from different models;

selecting K, as the magnitude of the second last padded

sample; and

determining b, and A, based on all samples falling within

the segement bounded by K.

25. A method as claimed in claim 24, further comprising
determining 1 and the remaining values in K, A, and b by
repeatedly applying said greedy algorithm to the remaining
samples which do not fall within segments bounded by all K,
determined already until there are no more remaining
samples.

26. A method as claimed in claim 1, wherein the composite
model is according to a probability density function:

Iyl
ho g

1 —e /AL 21
by 1 e

- - e
1 - e’(ycz ~Yey )/’\2 24,

if |yl < ye,

if e, <1yl < Ye,

(b3

P17 5, 2)

bin -t
- e N if Yo <lyl=a
1 — & ey —vep et 280

0 otherwise.

wherein 1 is the number of further distribution models

included in the at least one further distribution model,
?c:(ycl, Yeps - - - s Yo, ) FEpresents the at least one boundary
coefficient value, t:(bl, b,, . . . b,,,) is a probability
vector with b,, , representing the probability for the first
distribution model and each b,, 1=ixl, representing the
probability for the ith further distribution mode with
b,<0 and b, +b,+ . . . +bq+b,, =1, A=(Ay, Ay, . . ., Ay, )
with A,,, being the parameter of the first distribution

model and each A, 1=i<l, being the parameter of the ith
further distribution model with A.,>0,i=1, 2, ..., 1+1,and
a represents the largest magnitude a sample y can take.
27. A method as claimed in claim 26, further comprising
estimating y,., b, and A, using a greedy algorithm by:
initializing y,. ;
recursively growing the segment bounded by y_ by pad-
ding each sample immediately adjacent to that segment
into that segment until that sample and that segment are
deemed to come from different models;
selecting y,. as the magnitude of the second last padded
sample; and
determining b, and A, based on all samples falling within
the segement bounded by y,. .
28. A method as claimed in claim 27, further comprising
determining 1 and the remaining values in y_, b, and A by
repeatedly applying said greedy algorithm to the remaining
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samples which do not fall within segments bounded by all y,_.
already until there are no more remaining samples. 1

29. A device, comprising:

memory;

a component configured to access a set of transform coet-
ficients; and

aprocessor configured to execute instructions stored in the
memory in order to:

determine at least one boundary coefficient value,

determine one or more parameters for a first distribution
model for transform coefficients of the set the magni-
tudes of which are greater than one of the boundary
coefficient values,

determine parameters for at least one further distribution
model for transform coefficients of the set the magni-
tudes of which are less than the one of the boundary
coefficient values, and

perform a device operation on at least part of a composite
distribution model which is a composite of the first dis-
tribution model and the at least one further distribution
model having the respective determined parameters.

52

30. A non-transitory computer readable medium contain-

ing instructions executable by a processor of a device for a set
of transform coefficients, the instructions comprising:

instructions for determining at least one boundary coeffi-
cient value;

instructions for determining one or more parameters for a
first distribution model for transform coefficients of the
set the magnitudes of which are greater than one of the
boundary coefficient values;

instructions for determining parameters for at least one
further distribution model for transform coefficients of
the set the magnitudes of which are less than the one of
the boundary coefficient values; and

instructions for performing a device operation on at least
part of a composite distribution model which is a com-
posite of the first distribution model and the at least one
further distribution model having the respective deter-
mined parameters.

#* #* #* #* #*
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APPLICATION NO. : 14/273636

DATED : January 26, 2016

INVENTOR(S) : En-hui Yang et al.

It is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below:

Claims

Claim 17, Column 47, line 62, cancel the text beginning with “wherein” to and ending “take.” in
Column 47, line 67, and insert --wherein y, is one of the boundary coefficient values, f{y/0) is a

probability density function with parameters ¢ € ®, where 0 is a vector, and ® is a parameter space,
F(y|0) is a corresponding cumulative density function to f{y|0), b is a probability parameter, and a
represents the largest magnitude a sample y can take.--.

Claim 18, Column 48, line 17, cancel the text beginning with “wherein” to and ending “take.” in
Column 48, line 20, and insert --wherein y, is one of the boundary coefficient values, b is a probability
parameter, 4 is the parameter of the at least one further distribution model, and a represents the largest
magnitude a sample y can take.--.

Claim 20, Column 48, line 52, cancel the text beginning with “wherein” to and ending “values.” in
Column 48, line 55, and insert --wherein 1 < K <a, b is a probability parameter, q is a step size, a is
the largest index in a given sequence of discrete transform indices, P, 4 and K are model parameters,
and K is one of the boundary coefficient values.--.

Claim 21, Column 49, line 17, after the word “until” delete the expression O /l(i’l) <&, where € >
0” and replace with the expression “A” — 17" < &, where ¢ > 0"

Claim 22, Column 49, line 20, cancel the text starting with “22. A method as” to and ending “can
take.” in Column 49, line 50, and insert the following claim:

--22. A method as claimed in claim 1, wherein the composite model is according to a
probability density function:
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Second Day of August, 2016
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Michelle K. Lee
Director of the United States Patent and Trademark Office
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p{(¥|7c: b, 6)

‘;@ffgﬁﬂﬂﬂg if I < ¥

o V) e < bl <y
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0 otherwise

wherein / is the number of further distribution models included in the at least one further
distribution model, Ve = Oy Yepr s Vel represent the at least one boundary coefficient

value, f(y|0) is a probability density function with parameters 0 € ©, where 0 is a vector,

and O is a parameter space, F(y|0) is a corresponding cumulative density function to f{y|0),
b= (b1, by, -*+ , b)) is a probability vector with b, representing the probability for the first
distribution model and each b,, 1 <i </, representing the probability for the ith further
distribution model, g = (64, 0y, -+, 0-1) with 6., being the parameter of the first distribution
model and each G, 1 <i <], being the parameter of the ith further distribution model, and a
represents the largest magnitude a sample y can take.--.

Claim 23, Column 49, line 51, cancel the text starting with “23. A method as” to and ending
“coefficient values.” in Column 50, line 9, and insert the following claim:

--23. A method as claimed in claim 1, wherein the composite model is according to a discrete
distribution function:

pi(l?:j-‘:E)
—dfil-1) 1— "Iq_
%l‘e (i-1) 19%_ iF 0<i| <K
1-e Mt
by —(|t-Ky~1) e ; .
éjze 2 ::e——%[szﬂ lf K1<IL|SK2
—— T =1 - _1_'2_
b;_u-e m{ll-’ﬁ 1) 1-e M1 if K<li<a
2 1—e el
\Q otherwise

where K= (Ky, -, K) WithKo =0 < K, <K> <+ <K <Kpy =@, % = (s, , A, As1)
with 4,> 0, b= (bo, by, =+, b)) with b; >0 and by + by + -++ + by = 1, wherein b is a
probability vector parameter, / is the number of further distribution models included in the
at least one further distribution model, q is a step size, a is the largest index in a given

sequence of discrete transform indices, K, A, and b are model parameters, and K represents
the boundary coefficient values.--.
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Claim 25, Column 50, line 21, cancel the text starting with “25. A method as™ to and ending
“samples.” in Column 50, line 26, and insert the following claim:

--25. A method as claimed in claim 24, further comprising determining / and the remaining

values in K, A , and b by repeatedly applying said greedy algorithm to the remaining samples
which do not fall within segments bounded by all K; determined already until there are no
more remaining samples.--.

Claim 26, Column 50, line 27, cancel the text starting with “26. A method as” to and ending “can
take.” in Column 50, line 53, and insert the following claim:

--26. A method as claimed in claim 1, wherein the composite model is according to a
probability density function:

p(Vi¥e b, )
( b, 1 __Pl_:PI, .
Tevaia, ¢ if W < ¥y,
b 1 B t
a 1—e~Ore2=¥cy )22 27, e 2 f Ye, < Iyl < Ve,
» 1 I¥-rq;
i+ Y .
Ll-—e_@‘tﬂ—y‘l)mlﬂ 214 e if Yo < ¥l £ a
0 otherwise.

wherein / is the number of further distribution models included in the at least one further

distribution model, ¥¢ = ey Ve Yey) represents the at least one boundary coefficient
value, b= (b1, ba, -+ , bi1) is a probability vector with by, representing the probability for
the first distribution model and each b;, 1 <i </, representing the probability for the ith further

distribution mode with b, > 0 and b, + b, + - + b+ b =1, % =(hi, Ao, = , o) With Aoy
being the parameter of the first distribution model and each 4;, 1 <i </, being the parameter of
the ith further distribution model with 4,>0,i=1,2, --- , ] + 1, and a represents the largest
magnitude a sample y can take.--.

Claim 28, Column 50, line 66, delete the letter “I”” and insert “/”’; Column 51, line 1, after the variable

« Yer>> add the word --determined--.



